直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

传统的agent是怎么定义的

回答

传统的 agent 定义如下:

在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时未使用现代意义的“Agent”术语,苏格拉底、柏拉图和亚里士多德等哲学家已为其奠定基础。

亚里士多德在《尼各马科伦理学》中探讨德性伦理学,认为人的善良和幸福源自由理性和智慧引导的德性生活,区分了“被动行为”与“主动行为”,强调有道德价值的行为应是个体自愿且有明确意图的选择,个体作为行动者不仅要靠理性指导行为,还要对自愿行为承担道德责任。

苏格拉底通过独特对话法促使人们自我反省,考察行为是否符合道德标准,提出“无人有意作恶”,认为错误源于无知,主张通过增长智慧和美德引导正确决策。

柏拉图在《理想国》中构建理想社会模型,探讨灵魂三部分关系,认为理性主导时个体才能做出正确选择,将知识与道德紧密相连。

虽然古希腊哲学家未直接讨论“自由意志”,但他们关于个体自主决策及对结果负责的思考,对后世关于自由意志和道德责任的讨论影响深远,亚里士多德强调人作为理性动物应依据内在理性及外在自然法则实现德性和善。

在 20 世纪 60 年代,马文·明斯基定义“Agent”为一个自主、独立运行的计算或认知实体,具备感知、决策和执行任务的能力,有自己的目标、行为和策略,能与其他 Agent 交互和协作,可视为智能系统中的功能模块,在不同层次执行不同功能,通过协作实现复杂智能行为。在其著作《心智社会》中,深入探讨了人类思维和人工智能的复杂关系。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI-Agent系列(一):智能体起源探究

在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时没有使用现代意义上的“Agent”这一术语,苏格拉底、柏拉图和亚里士多德等哲学家已经为这一概念奠定了坚实基础。图4.1.1 “希腊三贤”亚里士多德在其《尼各马科伦理学》中详细探讨了德性伦理学。他认为,人的善良和幸福(eudaimonia)源自于过一种由理性和智慧引导的德性生活。他区分了“被动行为”与“主动行为”,强调真正具有道德价值的行为应是个体自愿并带有明确意图的选择。作为行动者,个体不仅要通过理性来指导自己的行为,还需对其自愿行为承担相应的道德责任。在亚里士多德之前,苏格拉底通过其独特的对话法促使人们进行自我反省,以考察其行为是否符合道德标准。他提出了“无人有意作恶”的观点,认为错误行为源于无知,并主张通过增长智慧和美德来引导正确的决策。柏拉图在《理想国》中则构建了一个理想社会模型,并探讨了灵魂三部分(理性、意志、欲望)之间的关系。他认为只有当理性主导时,个体才能做出正确选择,并将知识与道德紧密联系起来。虽然古希腊哲学家们没有直接讨论“自由意志”,但他们关于个体如何自主地做出决策并对其结果负责的思考,无疑对后世关于自由意志和道德责任的讨论产生了深远影响。亚里士多德特别强调人作为理性动物,应依据内在的理性及外在的自然法则来实现其德性和善。

AI-Agent系列(一):智能体起源探究

在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时没有使用现代意义上的“Agent”这一术语,苏格拉底、柏拉图和亚里士多德等哲学家已经为这一概念奠定了坚实基础。图4.1.1 “希腊三贤”亚里士多德在其《尼各马科伦理学》中详细探讨了德性伦理学。他认为,人的善良和幸福(eudaimonia)源自于过一种由理性和智慧引导的德性生活。他区分了“被动行为”与“主动行为”,强调真正具有道德价值的行为应是个体自愿并带有明确意图的选择。作为行动者,个体不仅要通过理性来指导自己的行为,还需对其自愿行为承担相应的道德责任。在亚里士多德之前,苏格拉底通过其独特的对话法促使人们进行自我反省,以考察其行为是否符合道德标准。他提出了“无人有意作恶”的观点,认为错误行为源于无知,并主张通过增长智慧和美德来引导正确的决策。柏拉图在《理想国》中则构建了一个理想社会模型,并探讨了灵魂三部分(理性、意志、欲望)之间的关系。他认为只有当理性主导时,个体才能做出正确选择,并将知识与道德紧密联系起来。虽然古希腊哲学家们没有直接讨论“自由意志”,但他们关于个体如何自主地做出决策并对其结果负责的思考,无疑对后世关于自由意志和道德责任的讨论产生了深远影响。亚里士多德特别强调人作为理性动物,应依据内在的理性及外在的自然法则来实现其德性和善。

AI-Agent系列(一):智能体起源探究

[title]AI-Agent系列(一):智能体起源探究[heading2]八、Agent的”明斯基时刻“在20世纪60年代,人工智能的研究主要集中在符号主义和规则系统上。研究者们试图通过逻辑推理和知识表示来模拟人类智能。然而,明斯基很快意识到,这种方法在处理复杂的认知和智能任务时显得力不从心。他开始探索一种更为灵活和分布的智能理论,这便是后来被称为“Agent”的概念。明斯基定义“Agent”为一个自主、独立运行的计算或认知实体,它具备感知、决策和执行任务的能力。每个Agent都有自己的目标、行为和策略,并能与其他Agent交互和协作。这些Agent可以被视为智能系统中的功能模块,它们在不同层次上执行不同的功能,通过协作实现复杂的智能行为。图8.1马文·明斯基(拍摄于2008年)在马文·明斯基的著作《心智社会》中,他深入探讨了人类思维和人工智能的复杂关系。这本书不只是剖析了人类思维的核心,还展示了大脑里那些看起来微不足道的小单元是如何联合起来,形成从意识、精神活动到常识、思考、智能直至自我认知的复杂思维过程——他把这种复杂的智能结构称为“心智社会”。总结来说,明斯基提出的“心灵社会”(Society of Mind)理论中,对复杂智能系统的定义和解释为:

其他人在问
Agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2024-12-21
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 相关链接: 1. 2. 3. 4. 5. 6.
2024-12-17
基于知识库做备考AI Agent,我该怎么做
以下是基于知识库为您提供的备考 AI Agent 的建议: 首先,建议您先吃透 prompt,这对于学习 AI Agent 很重要。 在 cost 平台有丰富的教程和比赛,您可以参与其中。 了解到 AI agent 是大语言模型衍生出的智能体,用于解决大模型在处理复杂任务时存在的一些问题,如无法获取最新外部信息、缺少规划、没有记忆能力等。 明天银海老师将详细讲解 AI agent,您可以关注。 此外,知识库中还提到了一些相关的活动和内容,如 prompt battle、AI 神经大赛等,您可以根据自己的兴趣参与。 对于与 AI 会话相关的内容,您可以通过关键词学设进行学习,比如每日选词丢入稳定扩散模型,积累大量提示词,还建有飞书群供感兴趣的同学加入练习。 在 AI 绘画方面,是视觉基础,有针对 AI 绘画学社做的关键词词库精选活动。同时,还收集了 AI 视频类词汇和相关词典,更具象的描述词汇能让模型发挥更好效果。 希望以上内容对您备考 AI Agent 有所帮助。
2024-12-16
怎么做一个搜索ai新闻的agent
要做一个搜索 AI 新闻的 agent,您可以参考以下步骤: 1. 设定 Bot 的人设与回复逻辑。 2. 为 Bot 配置技能: 在 Bot 编排页面的技能区域,单击插件功能对应的“+”图标。 在添加插件页面,选择阅读新闻>头条新闻>getToutiaoNews,然后单击新增。 3. 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。 4. (可选)为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 测试您的 Bot:配置好 Bot 后,在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。 6. 发布您的 Bot: 在 Bot 的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-12
大模型的定义是什么?有官方权威定义吗
大模型的定义可以从以下几个方面来理解: 1. 从技术角度:以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,例如模型中的权重(weight)与偏置(bias),像 GPT3 拥有 1750 亿参数。 2. 通俗来讲:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。 3. 类比角度:可以用『上学参加工作』这件事来类比大模型的训练、使用过程,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)等。 4. 分类角度:大型模型主要分为两类,一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 参考:
2024-12-13
AI的定义
AI(人工智能)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 对于AI的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是AI所感兴趣的。 另外,OpenAI 分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
人工智能将如何重新定义我们的学习
人工智能将通过以下方式重新定义我们的学习: 1. 元学习:凭借神经网络基础,通过元学习更快地获取知识,带动人类共同进步。 2. 构建堆叠模型:开发具有潜在空间层次结构的堆叠 AI 模型,以帮助理解模式和关系,可能会平行于人类教育范例发展,并可能专门发展以培养新型专业知识。 3. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,且需要多样化的方法和避免复制危险偏见。 4. 学习方式的改变:让 AI 像人类顶尖人才一样学习,从基础开始,通过正规教育和实践,培养处理复杂情况和细微差别的直觉。例如在医疗保健领域,医生将把文档工作交给 AI 书记员,初级医疗服务提供者将依赖聊天机器人进行分诊等。 总之,人工智能将在学习的模式、方法和应用等方面带来不可逆转的改变。
2024-12-02
我要用prompt定义一个智能助手,最佳格式是什么样的
以下是定义智能助手的一些最佳格式和建议: 1. CRISPE 框架: Capacity and Role(能力与角色):明确智能助手的角色和能力,例如“你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析”。 Insight(洞察):提供背景信息和上下文,比如“处理一起复杂的合同纠纷案件,我们可以向智能助手提供案件的关键事实、相关法律以及案件涉及的背景”。 Statement(陈述):清晰说明希望智能助手做什么,例如“要求智能助手总结此案件中双方的诉求、检索法条、预测可能的判决结果”。 Personality(个性):指定智能助手回答的风格或方式。 Experiment(举例):通过举例进一步说明需求。 2. 学校通用场景中的示例: 创建课程计划助手:“我是教{……}的老师,帮我创建一份课程计划”。 写作素材收集助手:“提供{指定主题}的结论和数据,帮我提供写作素材”。 雅思写作助手:“我希望你作为雅思写作考官,帮我提升英语。我们现在开始,我的第一个问题是……” 3. 视频相关的提示格式: Specify Visual Details(指定视觉细节):包括颜色、灯光、摄像机角度和风格等视觉元素的描述。 Mention Desired Length and Format(提及期望的长度和格式):说明具体的时长(秒或分钟)或格式(宽高比、分辨率)。 Outline Audio Preferences(概述音频偏好):详细描述所需的音频元素,如背景音乐、旁白或音效,并说明是由智能助手生成还是自行提供。 Consider Ethical and Copyright Guidelines(考虑道德和版权准则):确保提示符合道德标准和版权法,避免侵权或涉及敏感话题。 您可以根据具体需求和使用的工具对这些模板和示例进行调整。记住,输出的质量很大程度上取决于您通过提示传达需求的清晰程度。
2024-11-28
人工智能的定义
人工智能是一门研究如何使计算机表现出智能行为的科学。最初,计算机遵循着明确的程序和算法进行受控计算。但对于一些任务,如根据照片判断一个人的年龄,我们无法明确其解法和步骤,无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。 “智能”的概念没有明确的定义。阿兰·图灵提出了图灵测试,将计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,则认为该计算机系统是“智能”的。 在相关研究中,对于智能、人工智能和人工通用智能的定义存在多种观点和定义方式,但都存在问题或争议。例如,有以目标为导向的定义、围绕技能获取效率展开的定义等,但各自都有局限性。
2024-11-03
我想用AI工具生成PPT,已经有文字内容了,需要AI帮我排版,我可以自定义PPT模板吗?如果可以的话,推荐几个合适的AI工具
您可以自定义 PPT 模板。以下为您推荐几个合适的 AI 工具: 免费工具:讯飞智文(http://zhiwen.xfyun.cn) 付费工具:百度文库、Gamma.app 有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,若用户不满意可以自行选择模板。 此外,对于 AI 文章排版工具,以下是一些流行的选择: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:虽不是纯粹的 AI 工具,但广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的 AI 排版工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎,因其提供强大排版功能和广泛学术支持。对于一般文章和商业文档,Grammarly 和 PandaDoc 等工具可能更适用。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-08
AI的最新发展如何,对于哪些传统行业产生了影响
AI 的最新发展呈现出以下特点和影响: 技术方面:在自然语言处理和多模态推理领域取得进步,模型性能和多模态处理能力显著提升。 行业影响: 推动技术行业发展,为处理大量数据和复杂计算的专业用户提供高效工具。 革新机器人领域,促进智能设备、高级电池能源、电驱动火箭引擎等行业进步。 在核聚变技术、生物制药和纳米科技等前沿领域发挥关键作用。 预计对全球 GDP 产生巨大影响,帮助美国解决债务问题,为经济发展提供新动力。 众多产品和解决方案将被 AI 驱动的创新替代品取代,产业变革规模巨大,AI 相关行业的 TAM 将扩展到几乎所有人类参与的行业。 应用层大量创新,重点从基础训练转移到更高层次的认知任务,如计划和推理。 降低开展业务和投资成本,为收入增长做出贡献,推动公司竞争优势上升。 加速专业服务出现,熟练 AI 的专业人员能产生高附加值。 AI 对传统行业的影响包括但不限于以下方面: 教育:改变教学方式和学习体验。 医疗:辅助诊断、疾病预测等。 科研:提高研究效率和创新能力。 总之,AI 正处于重要的发展阶段,其影响深远且广泛,需要关注其合理使用以确保对社会产生正面影响。
2024-12-10
我是一名传统制造业的产品经理,一名ai小白,想在ai方面进行创业,有哪些方向建议
以下是为您提供的在 AI 方面创业的方向建议: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,熟悉 AI 能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发简单的聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向。 2. 建立 AI 写作流程,从生成大纲开始,逐步扩展到段落生成和数据支持。 3. 探索多语言内容,借助 AI 辅助翻译和本地化内容以拓展国际市场。 4. 利用 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 从行业观点来看: 1. 可能成功的 AI 公司应打造自身的数据飞轮,尤其在 ToC 场景中寻求突破,因为 C 端的数据飞轮效应可能是早期决胜关键。 2. 有专业壁垒的垂直模型可能是机会所在,如高价值、特定领域依赖丰富的专有数据集。 3. 大模型产品可朝个性化(装上“记忆”成为工作助理或陪伴者)和场景化(装上“手”和“眼睛”)方向发展。 从 AI 创业者的情况来看: 1. 如天涯,具备软件开发经验和连续创业经历,可在 AI 领域发挥优势。 2. 像 Eureka 这样的 Fintech 产品经理,可在 AI 金融领域应用方面探索。 3. Zima 在编程和 AI 教育探索方面有基础,可关注 AI+教育和 AI4Science 方向。 4. Mr.water🐳 可凭借与高校教授的联系,考虑科研方向转化。 总之,AI 创业要注重技术驱动和产品定义,用好市面上的 AI 工具,从效率和变革角度组织公司架构。同时,把握好融资节奏,在实践中有效迭代。
2024-12-06
ComfyUI与传统抠图方法有何不同?
ComfyUI 与传统抠图方法主要有以下不同: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理,而传统方法相对较为常规。 2. 自动化程度:ComfyUI 具有自动化工作流,能够消灭重复性工作,传统方法则需要较多人工操作。 3. 功能拓展:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等,传统方法功能相对单一。 4. 定制需求:ComfyUI 可根据定制需求开发节点或模块,传统方法在定制素材方面存在局限。 5. 效率:ComfyUI 生成抠图素材全程只需几秒,传统方法要么花钱购买,要么花费大量时间自己制作,且难以满足定制需求。 此外,ComfyUI 中的 BrushNet 是一种新颖的即插即用的双分支模型,具有以下特点和优势: 1. 能够将像素级遮罩图像特征嵌入任何预训练的扩散模型中,确保连贯且增强的图像修复结果。 2. 高效地从遮罩图像和潜在噪声中提取和整合特征,允许模型在图像生成过程中更好地理解和重建缺失或损坏的部分。 3. 通过与预训练的 UNet 网络结合使用,有效地增强图像细节和质量,适用于高分辨率图像修复任务。 4. 能够更加细致地处理图像的细节和边缘,确保修复后的图像与原始图像在内容和风格上保持一致。 通俗来讲,BrushNet 的工作过程类似于小时候的连点成图游戏: 1. 掩码:如同有洞的纸覆盖在图片上,让电脑了解需修复部分。 2. 编码器:将需修复图片转换成电脑能理解和处理的信息。 3. 噪声潜在空间:加入随机性使修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板帮助完成修复工作。 5. 去噪和生成图像:去除噪声并创建真实的图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片与原始图片融合。
2024-12-03
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
AI 赋能传统应用时,针对后端开发来对接 AI 时,功能和流程设计上需要主页些什么
在 AI 赋能传统应用,后端开发对接 AI 时,功能和流程设计上需要注意以下要点: 1. 讨论需求:明确项目目标和用户需求,确保团队对产品方向有一致的理解。 2. 确定关键功能:根据需求确定产品最核心的功能,确保能实现最基本的用户价值。 3. AI 生成产品草图:利用 AI 快速生成界面草图,帮助团队更好地理解产品的外观和交互。 4. 列出功能列表:明确产品所需的功能模块,并逐一列出。 5. 选择一个功能:每次专注完成一个功能,确保质量与效率。 6. 向 AI 描述功能:详细描述功能需求,AI 会根据描述生成代码。 7. AI 编写代码:AI 根据需求编写代码,减少开发者的重复性劳动。 8. 测试代码:测试生成的代码,确保正常运行。 9. 向 AI 提出问题:若功能不正常,将问题反馈给 AI 进行调整。 10. 功能完成:功能通过测试后标记为完成。 11. 还有功能吗:若还有未完成的功能,继续开发下一个功能。 12. 发布初始版本:所有核心功能完成后发布初始版本,以获取用户体验反馈。
2024-10-22
AI 赋能传统应用时需要主页些什么
以下是关于 AI 赋能传统应用时的一些要点: 在 UI 设计方面,使用 Midjourney 生成特定页面(如首页、登录页等)时,可添加页面指令描述,如“landing page”“Profile Page”等关键词,分别用于生成社交平台的登录页和人力资源类产品的个人资料页。Midjourney 产出的设计图视觉效果佳,适合 APP 设计初始阶段的头脑风暴和风格探索,为设计师提供灵感和创意,但直接用于落地开发仍有距离。 在合规方面,政府通过发布相关内容支持相关工具的发展。AI 监管框架适用于整个英国,涵盖多个领域和政策区域,会考虑权力下放的影响,将依靠现有立法实施框架,并继续与各方互动确保各地受益。 在进一步的发展中,将分析研究成果,改善对相关问题的理解,确定合作安排,鼓励发布指导,提出中央监测和评估框架的设计提案等。
2024-10-22