Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在使用sys prompt时为什么要为模型定义角色

Answer

在使用系统提示词(sys prompt)为模型定义角色具有以下重要性:

  1. 符合特定应用场景:通过定义角色,使模型的行为和输出更符合具体的应用需求,例如让模型作为历史顾问回答历史问题,或作为技术专家解决技术难题。
  2. 明确任务和风格:不仅可以指定具体的人物角色,还能设定一种交流风格,如正式、幽默、友好等。
  3. 引导模型行为和输出:为模型提供固定的模板,确保其输出与期望和工作流的需求保持一致。
  4. 优化用户体验:ChatGPT 有默认的“一个乐于助人的助手”角色,可通过修改系统提示词来满足更个性化的需求。

然而,也有观点认为不需要过度依赖角色扮演类的提示词。关键是要非常具体地描述出模型所在的使用环境,提供足够详细的信息,以避免模型未按预期完成任务。提示词最重要的是表达清晰准确。

Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI:GPT_最佳实践中文大白话版本_未来力场编译.pdf

(G列),如果是,则计算差值;否则,返回0。将这些公式应用到各行,并确保相应的单元格引用正确(例如,A2、B2:E2等),这样您就可以自动计算全年汇总、各月平均销售和超出年平均销售额了。1.2搞角色扮演,一直很好用Ask themodel to adopt a personaThe system message can be used to specify the persona used by themodel in its replies.系统消息有什么用?可以用来指定一个“Persona”。使其更符合特定的应用场景。Persona这个词在拉丁语里的原义是“面具”。可以看作是模型采取的特定角色或风格,就像戴上了一种特定的“社交面具”,通过这种“面具”来与用户交流。所以Persona不一定是:XX人(比如:贾斯汀比伯)、XX职业(比如:一个中学老师)。也可以是一种“风格”。例如正式、幽默、友好等。ChatGPT有一个默认的SYSTEM Prompt:You are a helpful assistant.“一个乐于助人的助手”也就是ChatGPT默认的“面具”/“角色”,所以它会尽力帮你解决提出的问题。你可以在Playground或者像Knit这样的工具里面修改这个SYSTEM Message。然后把你正常情况下要提的问题写在USER里面。这是一种进阶的提示词用法。

蓝衣剑客:四万字长文带你通学扣子

在大模型节点中,设置系统级的提示词(system prompt)是一个关键步骤,这与外层用户直接交互的提示词不同。系统级提示词主要用于定义模型的角色和任务,提供一个固定的模板来指导模型的行为和输出。这种设置允许你明确地指示模型扮演的角色以及它需要完成的具体任务。例如,你可能需要模型作为一个历史顾问来回答有关过去事件的问题,或者作为一个技术专家来解决特定的技术问题。通过在系统级提示词中设定这些参数,你可以确保模型的输出与你的期望和工作流的需求保持一致。与外层提示词相比,系统级提示词更侧重于模型的内部工作机制,而外层提示词则更多地关注于如何根据用户的指令进行编排和响应。通过精心设计这两种提示词,可以增强模型对用户指令的处理能力,并确保整个工作流的顺畅和高效。在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在Coze的大模型组件中,最多可以支持200次的循环,这相当于一个200次的for循环,允许我们对200个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有200个元素,我们可以设置每次同时处理5个元素,这样只需要40次循环就可以完成整个集合的处理。

Claude工程师聊prompt:不要把模型当小孩子、不需要角色扮演、实话实说

Zack Witten:但是有些时候我觉得并不完全是撒谎,更像是用比喻来解释思路。比如我试图让Claude判断一张图表或图像好不好,或者说它的质量高不高。我发现最有效的提示是问模型,如果这张图表作为高中作业提交,会打什么分。所以我并不是在说「你是一名高中老师」,而更像是「我希望你按照高中老师打分的标准来分析」。David Hershey:这样的比喻其实不太容易想出来。大部分人还是会倾向于用默认的思维方式,你会经常看到大家找一些类似任务的仿制品,比如说你是一名老师,但其实很多时候这种做法忽略了你产品中的很多细节。我在企业用的提示中见过太多这样的情况,大家喜欢写类似的东西,因为他们直觉上认为这样更好,可能是因为模型看过更多的内容,比如它看过的高中测验比LLM评估还多。这可能确实有道理,但就像你说的,随着模型变得越来越好,我觉得更重要的是尽量具体地描述当前的场景。我总是这样建议别人,这并不是说我觉得这些比喻完全没用,像「把图表打分就像给高中作业打分」这样的比喻也许有一定道理。但这些往往是人们喜欢用的简单化的思路,试图快速理解发生了什么,或许不适用于模型。比如我会直接告诉它,你是这款产品中的助手,代表公司在产品里与人沟通。你是产品中的那个支持聊天窗口。你是一种语言模型,而不是一个人。关键是要非常具体地描述出模型所在的使用环境。我经常看到这种情况,因为我最担心的是大家总是用角色扮演类的提示词作为一种捷径,让模型完成某个类似的任务。而当模型没有按照预期完成任务时,他们就会感到困惑。但其实那个预设的角色根本不是你想要模型完成的任务本身。你让它去做了其他的事情。如果你没有给它提供足够详细的信息,那么你可能就漏掉了某些关键点。还是回到我们一开始说的,提示词最重要的是表达清晰准确。

Others are asking
怎么在coze的智能体总加入一个使用MARKDOWN编写的代码的prompt?
在 Coze 的智能体中加入使用 Markdown 编写的代码的 prompt 可以参考以下方法: 首先,了解相关的任务和目标,比如像实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为达到这一效果,大模型对话产品通常需要完成网页爬取、内容总结、二维码生成、卡片样式生成等关键步骤。 在编写 prompt 时,可以发现新的词生卡 Prompt 组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”“字体规范”“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。 对于刚入门的朋友,首推 LangGPT 结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户,一方面可以继续选择 LangGPT,另一方面如有额外精力和好奇心,不妨尝试刚哥推崇的 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。但需要注意的是,真正重要的不是提示词的外在形式,而是内容是否与 AI 的“理解机制”相契合。同时,在实际应用中,还需要经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。
2025-01-19
仿写公众号的prompt
以下是关于仿写公众号 prompt 的相关内容: 1. 对于使用 GPT 模仿创作内容的万能思路: 明确目标是找到教 GPT 创作的方法论,即“know how”。 把方法论和示例写到 prompt 中,可改写大佬写好的 prompt,如 JK 老师的欢乐多朋友圈段子生产 V0.3,模仿改写出自己的小红书视频笔记标题产出助手 0.1。 把拆解得到的方法论和示例写到 Skills 部分,运用 COT(少样本提示)技巧。 若之前未写过结构化的 prompt,可打开云中江树老师的 LangGPT 项目学习 https://github.com/yzfly/LangGPT/blob/main/README_zh.md 了解。 0.1 版的使用效果。 2. 提示词快闪答疑: 新教师辅导专家的 prompt 编写要根据教学业务知识,写备课助手、上课助手和课后反思助手等,并融入“如何做好这些事”的方法论。 对于宋小涛 FewShot 产生更好内容的问题,可能是未把握模仿说话或写作风格的要素,需有关键词和方法论。 不同模型之间的区别一般通过实际使用总结经验,也可参考他人测评,如 。 当 ChatGPT 总结提炼文本效果差时,要描述清楚总结的方法、基于的规则、总结的内容以及期望的结果,如“请为我总结以下文档,提炼出每个段落中和 XXX 有关的核心内容,并把其中关于 XXX 的部分加粗显示”。 3. 专业的战争分析官 prompt:包括原始 prompt 和仿写 prompt 。
2025-01-16
prompt是什么
Prompt 是您提供给 AI 的文本,用于引发相关输出。它通常以问题或指示的形式出现,例如“为什么天空是蓝色的?”。在不同的 AI 应用中,如 Claude、Midjourney 等,其具体含义和使用方式有所不同。 在一般情况下,Prompt 是一段指令,用于指挥 AI 生成您所需要的内容。每个单独的提示词叫 tag(关键词)。支持的语言包括英语,emoji 也可以使用。语法规则方面,用英文半角符号逗号来分隔 tag,逗号前后有空格或者换行不影响效果。还可以改变 tag 权重,有两种写法,一种是通过设置权重数值,另一种是通过添加括号改变权重。此外,在某些高级玩法中,还可以进行 tag 的步数控制。 在 Midjourney 中,提示是您提供的文本命令,用来指示 AI 创建什么内容。它可以是一个单词、一句话,或者是一个详细的描述,结合各种元素来引导 AI 塑造输出内容。提示设计得越周到,结果就越有可能符合您的预期。例如,一个简单的提示可以是“An alien humanoidv 6.1”,更详细的提示可以是“A lowangle shot of an alien humanoid creature with a glowing screen on its face,looking down from the side,atmospheric lighting,and a minimalist backgroundv 6.1”。但需要注意的是,生成结果可能不稳定,影响提示的元素或组成部分不稳定。
2025-01-15
prompt优化
以下是关于优化 Prompt 的相关知识: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您想要表达的内容,避免使用过于笼统的词语,以便 AI 更准确地理解您的需求。 2. 添加视觉参考:在 Prompt 中插入相关的图片参考,可显著提高 AI 理解您的意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩,让 AI 能生成出期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意料之外的输出,可以在 Prompt 中添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。 另外,关于 Grok 角色设定 prompt 方面,目前 Grok 没有完全开放,可尝试直接用 Grok 的设定在其他大语言模型做尝试,比如先直接问问题,参考 Grok 的人物设定,对 prompt 稍微做优化。 在提示工程方面,在整个提示开发生命周期中,值得从最具能力的模型和无约束的提示长度开始,以建立性能上限。一旦达到所需的输出质量,可以尝试优化,如缩短提示或使用较小的模型,以根据需要降低延迟和成本。通过遵循测试驱动的方法论,并在一开始仔细定义任务和成功标准,投入时间设计健壮的测试用例和提示,将在模型性能和可维护性方面获得好处。
2025-01-13
李继刚的prompt
李继刚在 AI 领域的相关工作主要是用 Claude 做卡片,其中包括图尔敏论证结构分析、So what、Unicode、信达雅翻译、情绪解析器、撕考者、方法论、沉思者、疯狂星期四、知识卡片、答案之书、职业新解、说文解字等方面的 Prompt 。 在字体使用方面,可将常用词生成后在手机设置中添加快捷输入,如输入 cc 输出 𝓒𝓸𝓸𝓵 。想让说文解字显示甲骨文,可通过加载本地字体或在 Prompt 中指定 fontfamily 为相应字体来实现。 此外,李继刚还进行了直播分享“如何与 AI 对话”,有相关视频回放。他开了公众号,并在制作记忆卡片和创新概念解释器的过程中,意识到写 Prompt 时存在词汇量、审美能力和抽象能力的不足。同时,还分享了 SVG 图的 Prompt ,如 SVGArtist ,其画图效果惊艳。还涉及质疑之锥、逻辑之刃(升级版)、细节、胡思乱想、metaClaude 等内容。欢迎大家评论区贴上自己的测试效果。
2025-01-12
生成图片 prompt
以下是关于生成图片 prompt 的相关内容: 在“城市狂想”直接上手操作的教程中,图片提示词生成部分: 1. 为您提供了猫叔之前写的一段提示词的 prompt,例如: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 注意,这些提示词可以直接在悠船和 MJ 中使用,如果是其他平台的工具,请复制后删除包含“”以后的部分。 2. 拿到提示词后,进入对应的 AI 绘画工具界面,如悠船,点击开始想象按钮,粘贴提示词,回车等待几十秒即可生成 4 张图片,可对喜欢的图片进行变化、高清、重塑、扩图等操作。 在 5 种 Midjourney 进阶提示用法中,关于 Image Prompts 图像提示: 1. 除了用文本提示生成图像,也可以用图像作为提示来影响最终图像的构图、风格和颜色,即“垫图”。图像可以单独使用,也可以与文本提示词结合使用。结合文本提示时,可以同时使用多张图像(最好不超过 5 张),仅用图片作为提示时,最少要有 2 张。 2. 图片提示必须以链接的形式,放在提示词的开头。如果是在线图片,需要复制图片的直接链接,如果是本地图片,可以上传到 midjourney 上,然后复制图片链接,图片链接必须以.png、.gif 或.jpg 结尾。 3. 使用图像提示的操作步骤: 双击文本框左侧的加号,选择一张本地的图片上传,然后按 Enter 将图片发送出去,等待图片上传完成后,点击图片打开大图,单击右键复制图片链接。 在文本框内启用/image 命令,在 prompt 中粘贴刚刚复制的图片链接(直接用鼠标拖动图片到 prompt 框内,效果和复制粘贴一样),空一格,然后继续输入正常的文本提示词和后缀参数,完成后发送信息,等待图片生成。 可同时添加多个图片链接,链接之间用空格隔开,图片链接一定要位于提示词开头。 4. 使用 Image Prompts 需要注意以下几点: 如果是使用在线图片,链接必须是指向在线图片的直接链接,而非图片来源网页的链接,一般情况下在图片上单击右键可以看到“复制图片链接”的选项。 图像提示在 Midjourney 中对所有人可见,除非开启 Stealth Mode 隐身模式。
2025-01-09
我想问 有没有可以帮忙写 flux 或者其他图像模型 prompt 的 system prompt 模板
以下是为您整理的相关内容: 关于 FLUX 模型的安装部署: 模型选择:FLUX.1 有 dev、dev fp8、schnell 等版本,建议选择 dev 版本,显卡较好可用 fp16,显卡不够选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,可在“UNET 加载器”节点中将 weight_dtype 设置为 fp8,降低显存使用量,但可能稍降质量。 clip:t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,超过 32GB 内存建议用 fp16。 Vae:下载后放入 ComfyUI/models/vae 文件夹。 关于训练 Midjourney 的 prompt: 训练问题:强大的 DMs 通常消耗数百个 GPU 天,推理由于顺序评估而成本高昂。在有限的计算资源上应用 DMs 于强大的预训练自动编码器的潜在空间中训练,可在不影响质量和灵活性的情况下实现复杂度降低和细节保留的最佳点,显著提高视觉保真度。引入交叉注意力层到模型架构使扩散模型成为强大灵活的生成器,支持文本和边界框等一般条件输入,实现高分辨率卷积合成。 版本:Midjourney 定期发布新模型版本以提高效率、连贯性和质量。最新模型为默认,也可通过version 或v 参数或/settings 命令选择其他版本。V5 模型于 2023 年 3 月 15 日发布,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。 关于 ComfyUI 图片提示词反推提示词生成: 在 ComfyUI 里使用 MiniCPM 做图片提示词反推与文本提示词生成,可和 flux 模型配合生成图片,建议使用量化版本的模型(int4 结尾)节省显存。 安装方法:进入 ComfyUI 自定义节点目录,克隆相关仓库,重启 ComfyUI。 模型下载:网盘 https://pan.quark.cn/s/00b3b6fcd6ca ,下载后放入 ComfyUI 的 models 文件夹下 MiniCPM 文件夹中,没有就新建一个。
2025-01-02
在多功能对话系统中,怎么的sys prompt设置有助于提高有效性
在多功能对话系统中,以下的 sys prompt 设置有助于提高有效性: 1. 明确模型的角色和任务:例如将模型设定为历史顾问回答历史事件相关问题,或设定为技术专家解决特定技术问题。 2. 适应特定需求:如根据用户提供的食材和饮食偏好生成个性化食谱建议。 3. 创造独特内容:像融合两个单词创造新词汇,生成巧妙的双关语和文字游戏等。 4. 塑造个性和风格:如扮演具有幽默且带有讽刺意味的助手角色。 例如,Anthropic 发布的 Claude 2.1 允许用户提供自定义指令以提高性能,设置有用的上下文,增强承担特定个性和角色的能力,或以更可定制、符合用户需求的一致方式构建响应。在 Coze 上的大模型节点中,设置系统级的提示词是关键步骤,它侧重于模型的内部工作机制,与外层用户直接交互的提示词相互配合,精心设计可增强模型对用户指令的处理能力,确保工作流的顺畅和高效。
2024-12-24
在使用openai api的时候,同一轮对话,需要每次都传system prompt吗?可以利用什么session id来减少system prompt的显示调用吗
在使用 OpenAI API 进行同一轮对话时,系统提示的使用并非每次都必须传递。系统提示在对话中类似于一个过滤器,大语言模型在回应新提示前会自动应用。一般来说,系统提示包括任务定义、输出格式和操作边界等部分,以确保大语言模型清楚任务、按要求格式化回答以及明确不应采取的行为。 另外,OpenAI 还推出了 Stateful API,开发者只需传入最新的对话记录,大模型会结合该记录和其维护的历史记录依据上下文产生新内容。Stateful API 的实现机制类似于 KV Cache,能指数级降低大模型应用的开销,提升计算速度。例如,在不使用 cache 的情况下,使用 GPT2 生成 1000 个 Token 将耗时 56 秒,而使用 cache 的耗时则被降低为 11 秒。可以预期 Stateful API 会采用类似于 KV Cache 的机制,缓存用户对话的历史记录,并在每次 API 调用中,使用增量信息结合服务端的历史记录生成文本,以此降低计算规模。 但关于是否可以利用 session id 来减少系统提示的显示调用,目前提供的知识库中未提及相关内容。
2024-12-11
什么是System prompt?什么是user prompt?二者有何区别?
System prompt(系统提示)是指在与语言模型(如 ChatGPT 等)的交互中,用于指定模型如何根据设定的角色和逻辑进行回答的文本。它通常包括任务定义(确保模型清楚自己的任务)、输出格式(指导模型如何格式化回答)、操作边界(明确模型不应采取的行为)等部分。在对话中,每次模型给出回应时,都会考虑到系统提示,它就像一个过滤器,模型在回应新提示之前会自动应用。 User prompt(用户提示)则是用户给语言模型(如 Claude 等)的文本,通常以问题或指示的形式出现,用于引发相关输出。 二者的区别在于: 来源不同:System prompt 是为模型设定的规则和指导,而 User prompt 是由用户发起的输入。 作用不同:System prompt 影响模型的整体回答方式和范围,User prompt 则是具体的问题或指令,期望得到针对性的回答。
2024-10-18
AI视频色调定义
AI 视频色调是一种在视频处理中用于营造特定视觉效果和情感氛围的重要元素。 双色调颜色是一种特殊的色彩处理技术,常用于图像设计和视频处理。其定义为将视频图像的阴影和高光分别替换为两种选定的颜色,通常是互补色或对比鲜明的颜色。这种技术起源于印刷行业,最初是为了节省油墨成本而发展起来的。在色彩理论方面,双色调颜色可以运用互补色、类比色、三角色彩、分裂互补色等方式来选择颜色组合,以创造不同的视觉效果。其应用场景广泛,包括品牌识别、情感传达、数据可视化、艺术摄影、电影调色等。常见的颜色组合有黑色和另一种亮色(如黄色、粉红色、青色等)、蓝色和橙色、紫色和黄色、红色和青色等。双色调技术具有在视觉冲击力、品牌识别、情感传达、技术经济性、设计灵活性等多方面的优点。 此外,在海螺 AIPrompt 教学中,对于视频画面的色调也可以通过 Prompt 精确公式进行设定。比如可以对画面色调的冷暖、视觉风格、氛围感等进行限定,以获得更符合预期的视频表现效果。例如“一对情侣坐在公园的长椅上交流,镜头维持固定拍摄情侣,画面色调偏暖,氛围温馨”“一只小羊在一片草地里低头吃草,镜头缓缓推进小羊,画面色调自然写实”。 不同的城市在视频色调设定上也可能有特定的颜色代表,如北京通常用红色代表其作为首都的象征,上海用蓝色代表现代化和海洋性气候,广州用绿色代表亚热带气候和丰富植被,深圳用银色代表高科技产业和现代化城市形象,杭州用粉色代表西湖美景和浪漫氛围,郑州用黄色代表中原大地,武汉用橙色代表热情活力,南京用紫色代表历史文化底蕴,成都用金色代表繁荣和美食文化,重庆用棕色代表山城特色和火锅文化,长沙用青色代表清新活力,厦门用浅蓝色代表海滨风光和宜人气候。
2025-01-10
人工智能的定义
人工智能是一门研究如何使计算机表现出智能行为的科学。目前对其定义并不统一,以下是一些常见的定义: 从一般角度来看,人工智能是指通过分析环境并采取行动(具有一定程度的自主性)以实现特定目标来展示其智能行为的系统。基于人工智能的系统可以完全依赖于软件,在虚拟世界中运行(例如语音助手、图像分析软件、搜索引擎、语音和人脸识别系统)或者也可以嵌入硬件设备中(例如高级机器人、自动驾驶汽车、无人机或物联网应用程序)。 2021 年《AI 法案》提案第 3 条对人工智能的定义为:“AI 系统指采用附录 1 中所列的一种或多种技术和方法开发的软件,该软件能生成影响交互环境的输出(如内容、预测、建议或决策),以实现人为指定的特定目标。”其中,附录 1 列举的技术方法主要包括:机器学习方法(包括监督、无监督、强化和深度学习);基于逻辑和知识的方法(包括知识表示、归纳编程、知识库、影响和演绎引擎、符号推理和专家系统);统计方法,贝叶斯估计,以及搜索和优化方法。 最初,查尔斯·巴贝奇发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,对于像从照片判断人的年龄这类任务,我们无法明确解法,无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。 需要注意的是,“人工智能”的概念自 1956 年于美国的达特茅斯学会上被提出后,其所涵盖的理论范围及技术方法随着时代的发展在不断扩展。相比于《2018 年人工智能战略》,2021 年《AI 法案》提案对于人工智能的定义采取更加宽泛的界定标准。在 2022 年《AI 法案》妥协版本中,欧盟理事会及欧洲议会认为“AI 系统”的定义范围应适当缩窄,并侧重强调机器学习的方法。
2025-01-02
f1 score的定义
F1 值是一种综合考虑准确率和召回率的平衡指标。准确率是指正确预测的样本数占总样本数的比例;召回率是指真正例被正确预测出来的比例。F1 值通过结合准确率和召回率来更全面地评估模型的性能。
2024-12-27
agent的定义
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包括短期记忆(用于所有的上下文学习)和长期记忆(通过利用外部向量存储和快速检索实现长时间保留和回忆无限信息)。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 从产品角度思考 Agent 设计时,比如我们的 Agent 可以是一个历史新闻探索向导,其身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短背景故事。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式、角色技能等方面。 Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。LLM Agent 是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括: 1. 规划:是 Agent 的思维模型,负责将复杂任务分解成可执行的子任务,并评估执行策略,通过使用大型语言模型的提示工程实现精准任务拆解和分步解决。 2. 记忆:即信息存储与回忆,包括短期记忆(用于存储对话上下文,支持多轮对话)和长期记忆(存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取)。 3. 工具:是 Agent 感知环境、执行决策的辅助手段,如 API 调用、插件扩展等,通过接入外部工具扩展 Agent 的能力。 4. 行动:是 Agent 将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。
2024-12-25
大模型的定义是什么?有官方权威定义吗
大模型的定义可以从以下几个方面来理解: 1. 从技术角度:以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,例如模型中的权重(weight)与偏置(bias),像 GPT3 拥有 1750 亿参数。 2. 通俗来讲:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。 3. 类比角度:可以用『上学参加工作』这件事来类比大模型的训练、使用过程,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)等。 4. 分类角度:大型模型主要分为两类,一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 参考:
2024-12-13
AI的定义
AI(人工智能)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 对于AI的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是AI所感兴趣的。 另外,OpenAI 分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
图的角色 用 cref 去控制一致性 风格可以用 sref 去控制
在 Midjourney 中,cref 和 sref 是用于引用图片的功能,它们有以下区别和使用方法: 1. 角色参考(cref): 作用:保持图像角色的一致性。 使用方法:在提示后添加“cref”,紧接着指向人物参考图像的 URL。例如:/imagine prompt beautiful girlcref。可以使用“cw”调整参考图像对生成图像的影响程度,数值范围从 0 到 100。强度 100(“cw 100”)是默认值,会使用面部、头发和衣服,cw 为 0 的话仅保证脸部一致。基础格式为“cref 图片链接,cw 100”。 参考链接: 2. 风格参考(sref): 作用:生成类似风格的图片,保持画风的一致性。 使用方法:在提示后添加“sref”,紧接着指向风格参考图像的 URL。例如:/imagine prompt beautiful girlsref。可以使用“sw”调整参考风格对生成图像的影响程度,数值范围从 0 到 1000。基础格式为“sref 图片链接,sw 100”。 参考链接: 如果想引用一张图,但只是把它作为新图的一部分,可以使用“sref”或“cref”,并通过调整“sw”或“cw”的值来控制引用图像的影响程度。例如:/imagine prompt beautiful girlsrefsw 500。这样,生成的图像将会在保持原有风格的同时,融入一部分引用图像的风格。
2025-01-13
帮我生成图片:里面写着“寂然的话语成真”的纯文字海报,字要平常的。不出现角色和人物。
很抱歉,目前无法直接为您生成这样的纯文字海报。但您可以使用一些在线的图片设计工具,如 Canva、稿定设计等,在这些平台上您可以选择合适的模板,输入“寂然的话语成真”的文字,并根据您的需求调整字体样式和布局,以达到您想要的效果。
2025-01-12
我想把ip角色变成动画,可以用哪个ai软件
以下是一些可以将 IP 角色变成动画的 AI 软件及相关信息: Pika、Pixverse、Runway、SVD 这四大 AI 视频工具可以用于制作 AI 短片。在使用时,需要注意写好 prompt 来描述角色形象,比如景别、特征、位置关系、环境、影片风格和比例等。 Midjourney 可以用于生成 IP 角色的动画效果。例如,生成一个帅气的男孩,描述其穿着、鞋子、视图等细节,还可以为女孩生成特定的形象,如来自未来赛博朋克的可爱女孩,穿着银色雨衣等。同时,要注意设置合适的关键词,如干净的背景、电影照明、超细节、3D 渲染等,以获得理想的效果。
2025-01-12
Ai如何绘画动漫人物角色
以下是关于 AI 绘画动漫人物角色的相关内容: Sarah Andersen 风格 主题风格: 漫画特色:通常使用简单黑白线条作画,配以极富表现力的角色表情,探讨如焦虑、社交尴尬、性别问题等,幽默呈现生活瞬间。 线条和轮廓:使用清晰简洁的线条,构建图像。 色调:大多数作品是黑白的,偶尔使用强调色。 角色设计:表情丰富,反映各种情绪状态。 元素:包含幽默和讽刺元素,以幽默方式反映日常生活场景。 技巧: 在主要描述语后面加上“by Sarah Andersen”或者“style reference Sarah Andersen”。 加入情感色彩的描述,如“joyful”“awkward”“anxious”等词。 利用cref 命令保持人物的一致性。 应用: 社交媒体上进行漫画创作。 使故事更加生动有趣的插图。 个性化礼物和商品设计(需注意版权问题)。 Niji·journey 5 生成多样化二次元角色设计风格 可以混合不同游戏风格引导生成角色设计,涉及绘画 AI 的“风格迁移”能力,基本原理是利用深度学习模型提取并分离图像的内容和风格特征,包括特征提取和特征重组。可以通过对游戏风格 Prompt 的更精确调整来控制混合比例。 Action figure 风格 创作建议: 复古风:模仿上世纪 8090 年代的可动人偶风格,采用饱和度较高、边缘略显粗糙的色彩,以及那个时代特有的设计元素。 动漫卡通化:将可动人偶设计成夸张的动漫风格,大眼睛、鲜明色彩,强调动作动态感和表情的戏剧性。 写实风格:追求极度逼真的描绘,细致刻画人物面部特征、服装皱褶和环境光影。 赛博朋克融合:结合赛博朋克元素,创造既未来又反叛的可动人偶形象。 其他: sref 种子值:可以和不同的种子值结合,创造出风格各异的 action figure。 内容: 经典角色重塑:选取广为人知的电影、漫画角色,重新诠释为可动人偶形态。 场景故事化:构想场景,让多个可动人偶在其中互动,讲述微型故事。 系列收藏展示:设计特定主题的可动人偶集合,展示收藏价值和展示美学。 跨界融合:尝试将不同时代或文化背景的角色进行融合,创造新颖独特的视觉体验。
2025-01-08
我想要让AI来操作,我这个电脑,然后呢?去充当一个AI客服的角色去回答微信上的问题有什么办法吗?
目前在微信中,Coze 平台是一个 AI 智能体创作平台,可以根据需求构建 AI 机器人并发布到多种社交平台。微信的不同功能在与 AI 对接上有所差异: 1. 个人微信/微信群:Coze AI 平台之前不支持直接对接,但国内版正式发布 API 接口功能后,直接对接已成为可能。 2. 微信公众号:Coze AI 平台支持对接,能让 AI 机器人自动回复用户消息。 3. 微信服务号:同样支持对接,可帮助企业提升服务效率。 4. 微信客服:Coze AI 平台支持对接,使 AI 机器人能够自动回答用户咨询,提高客服响应速度。 在把 AI 大模型能力接入微信后,对于类似客服的应用场景,存在模型幻觉导致胡乱回答的问题。对于非技术从业者,落地场景存在困难。一个问答机器人的界面配置包括 AI 模型、提示词、知识库。
2024-12-20
我想看关于使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节的实操
以下是关于使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节的实操: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 根据视频脚本生成短视频的 AI 工具有多种,例如: 1. :ChatGPT 可以生成视频小说脚本,而剪映则可以根据这些脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。这种方法可以快速实现从文字到画面的转化,节省大量时间和精力。 2. :在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. :这是一个 AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户可以提供文本描述,Pictory 将帮助生成相应的视频内容。 4. :提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. :这是一个 AI 视频创作工具,它能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. :专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。 在游戏《神谕》中,ChatGPT 生成对话内容和剧情的能力表现如下: 对于故事线,ChatGPT 可以通过 System Prompt 介绍游戏的故事背景和小机器人的人设。结合游戏中发生的关键事件,通过文字传递给 ChatGPT,生成游戏中关键的故事情节介绍,最后以小机器人自述的形式呈现出来。具体实现过程中有几种选择: 1. 离线生成:将 ChatGPT 作为离线工具使用,生成一次性剧情文案,并保存到游戏中。缺点是文案一旦确定就固定下来了,略显单调。 2. 实时生成:每次都让 ChatGPT 自由发挥,在关键的节点,将历史上下文信息发送给 ChatGPT 来生成实时文案,优势是每次发挥都在既定主题基础上有所差异,有一定随机性。但是实际的缺点是,每次生成的延迟较大,会让游戏为了等待剧情文案,而产生明显的停顿感。 因此选择:每局对局开始前,会为游戏的关键节点一次性生成所有文案。这样,每次游戏都可以产生不同的文案,且游戏过程中就不会因为剧情体验到明显的停顿感。剧情的故事格式,由预定义的 json 来表达,每次 ChatGPT 只需要替换填充内容即可。 对于实时对话,与剧情类似,不过最大的难点是如何让小机器人区分出来,您是希望跟它聊天,还是在让它执行某些指令,甚至能否边聊天边执行指令。背后最大的挑战是 ChatGPT 要支持生成类似“多模态”的返回信息。这里的“多模态”是指在您对话的内容中,可以同时返回“对话”和“代码”,而且以某种限定的格式返回,从而方便程序解析出来。类似的 prompt 描述为:按照上述的 prompt,大概率 ChatGPT 能输出符合要求的内容格式。
2024-12-10