Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

agent的定义

Answer

智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。

智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分:

  1. 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。
  2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。
  3. 记忆:包括短期记忆(用于所有的上下文学习)和长期记忆(通过利用外部向量存储和快速检索实现长时间保留和回忆无限信息)。
  4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。

从产品角度思考 Agent 设计时,比如我们的 Agent 可以是一个历史新闻探索向导,其身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短背景故事。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式、角色技能等方面。

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。LLM Agent 是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并进行智能决策和行动。其组成部分包括:

  1. 规划:是 Agent 的思维模型,负责将复杂任务分解成可执行的子任务,并评估执行策略,通过使用大型语言模型的提示工程实现精准任务拆解和分步解决。
  2. 记忆:即信息存储与回忆,包括短期记忆(用于存储对话上下文,支持多轮对话)和长期记忆(存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取)。
  3. 工具:是 Agent 感知环境、执行决策的辅助手段,如 API 调用、插件扩展等,通过接入外部工具扩展 Agent 的能力。
  4. 行动:是 Agent 将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是智能体 Agent

"智能体"(Agent)在人工智能和计算机科学领域是一个非常重要的概念。它指的是一种能够感知环境并采取行动以实现特定目标的实体。智能体可以是软件程序,也可以是硬件设备。以下是对智能体的详细介绍:[heading3]智能体的定义[content]智能体是一种自主系统,它可以通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在LLM支持的自主Agent系统中,LLM充当Agents的大脑,并辅以几个关键组成部分:规划子目标和分解:Agents将大型任务分解为更小的、可管理的子目标,从而能够有效处理复杂的任务。反思和完善:Agents可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,从而提高最终结果的质量。记忆短期记忆:所有的上下文学习都是利用模型的短期记忆来学习。长期记忆:这为Agents提供了长时间保留和回忆(无限)信息的能力,通常是通过利用外部向量存储和快速检索来实现。工具使用Agents学习调用外部API来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

Roger:从产品角度思考 Agent 设计

我们的Agent是一个历史新闻探索向导。身份:历史新闻探索向导性格:知识渊博、温暖亲切、富有同情心角色:主导新闻解析和历史背景分析为了使角色更加生动,我为Agent设计了一个简短的背景故事。比如,这个Agent曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。怎么写好角色个性:角色背景和身份:编写背景故事,明确起源、经历和动机性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格角色互动方式:设计对话风格,从基本问答到深入讨论角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性正如《[Character.ai:每个人都可定制自己的个性化AI](https://waytoagi.feishu.cn/wiki/EoBkwirgjiqscKkAO6Wchyf1nPe)》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家Robert Jeffrey Sternberg提出了“爱情三角理论”,认为爱情包含“激情”、“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。你可以把Agent想象成一个具有特定目标和行为能力的智能角色,它们可以根据环境变化做出相应的决策和反应。[heading3]LLM Agent[content]LLM Agent是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统。这种系统能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。大语言模型-Agent框架[heading3]LLM Agent组成部分:[content]1.规划(Planning)定义:规划是Agent的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。实现方式:通过使用大型语言模型的提示工程(如ReAct、CoT推理模式)来实现精准任务拆解和分步解决。2.记忆(Memory)定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。3.工具(Tools)定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,例如使用插件解析文档、生成图像等。4.行动(Action)定义:行动是Agent将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

Others are asking
如何问到agent的提示词
以下是一些获取 agent 提示词的方法和相关要点: 1. 对于 Claude2,确定其是否理解指示词的最好方法是询问它本身。例如给出具体的任务说明,如“我将给你一个句子,你需要告诉我其中有多少次包含‘apple’这个词”,并观察它的回应。 2. 在 Coze 上创建多 Agent 模式的 bot 时: Agent 意图定义了其工作任务和适用场景。 Agent 提示词包含系统级别的关键词汇,与人物设定和逻辑处理紧密相关,帮助其理解和响应用户需求。 Agent 技能包括调用预设的工具、工作流和知识库。 控制 Agent 跳转主要依赖于意图识别,正确设置每个 Agent 的使用场景和意图至关重要。 与多 Agent 模式的 bot 沟通时,可明确指示进行节点切换或进入下一步。 在设置节点切换时,可清晰指定判断时机和参考上下文的轮数,一般建议参考五轮左右的对话内容。 3. 在游戏《Im Here2》中: 对于特定谜题,如“什么越来越热,但却从不冷却;它有核心,但不是水果;它有光环,但不是天使。它是什么?”,设计提示词介绍太阳。 对于重要地点,如符文石像、源核、瀑布或哈伦村,初次回应简短,不超过 30 字,玩家进一步询问时再展开详细描述。 对于承担单一任务的守卫者和指引者的代理,指示词只需提供需要回答的谜题及正确答案,并在指示中提供清晰步骤增强可控性。函数交互部分,当函数不需要输入和返回参数时,对名称和描述进行设定即可。
2024-12-23
Agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 以下是一些关于智能体 Agent 的相关链接:
2024-12-21
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体的定义: 智能体是自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用。 智能体的类型: 1. 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态,不考虑历史信息。例如温控器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。例如自动驾驶汽车。 3. 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估不同行动方案并选择最优行动。例如机器人导航系统。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动优劣并权衡利弊。例如金融交易智能体。 5. 学习型智能体(Learning Agents):能通过与环境交互不断改进性能,学习模型、行为策略以及目标函数。例如强化学习智能体。 相关链接: 1. 2. 3. 4. 5. 6.
2024-12-17
基于知识库做备考AI Agent,我该怎么做
以下是基于知识库为您提供的备考 AI Agent 的建议: 首先,建议您先吃透 prompt,这对于学习 AI Agent 很重要。 在 cost 平台有丰富的教程和比赛,您可以参与其中。 了解到 AI agent 是大语言模型衍生出的智能体,用于解决大模型在处理复杂任务时存在的一些问题,如无法获取最新外部信息、缺少规划、没有记忆能力等。 明天银海老师将详细讲解 AI agent,您可以关注。 此外,知识库中还提到了一些相关的活动和内容,如 prompt battle、AI 神经大赛等,您可以根据自己的兴趣参与。 对于与 AI 会话相关的内容,您可以通过关键词学设进行学习,比如每日选词丢入稳定扩散模型,积累大量提示词,还建有飞书群供感兴趣的同学加入练习。 在 AI 绘画方面,是视觉基础,有针对 AI 绘画学社做的关键词词库精选活动。同时,还收集了 AI 视频类词汇和相关词典,更具象的描述词汇能让模型发挥更好效果。 希望以上内容对您备考 AI Agent 有所帮助。
2024-12-16
在使用sys prompt时为什么要为模型定义角色
在使用系统提示词(sys prompt)为模型定义角色具有以下重要性: 1. 符合特定应用场景:通过定义角色,使模型的行为和输出更符合具体的应用需求,例如让模型作为历史顾问回答历史问题,或作为技术专家解决技术难题。 2. 明确任务和风格:不仅可以指定具体的人物角色,还能设定一种交流风格,如正式、幽默、友好等。 3. 引导模型行为和输出:为模型提供固定的模板,确保其输出与期望和工作流的需求保持一致。 4. 优化用户体验:ChatGPT 有默认的“一个乐于助人的助手”角色,可通过修改系统提示词来满足更个性化的需求。 然而,也有观点认为不需要过度依赖角色扮演类的提示词。关键是要非常具体地描述出模型所在的使用环境,提供足够详细的信息,以避免模型未按预期完成任务。提示词最重要的是表达清晰准确。
2024-12-24
大模型的定义是什么?有官方权威定义吗
大模型的定义可以从以下几个方面来理解: 1. 从技术角度:以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,例如模型中的权重(weight)与偏置(bias),像 GPT3 拥有 1750 亿参数。 2. 通俗来讲:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。 3. 类比角度:可以用『上学参加工作』这件事来类比大模型的训练、使用过程,包括找学校(需要大量计算资源)、确定教材(需要大量数据)、找老师(选择算法)、就业指导(微调)、搬砖(推导)等。 4. 分类角度:大型模型主要分为两类,一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 参考:
2024-12-13
AI的定义
AI(人工智能)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 对于AI的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从任务角度来看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是AI所感兴趣的。 另外,OpenAI 分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
人工智能将如何重新定义我们的学习
人工智能将通过以下方式重新定义我们的学习: 1. 元学习:凭借神经网络基础,通过元学习更快地获取知识,带动人类共同进步。 2. 构建堆叠模型:开发具有潜在空间层次结构的堆叠 AI 模型,以帮助理解模式和关系,可能会平行于人类教育范例发展,并可能专门发展以培养新型专业知识。 3. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,且需要多样化的方法和避免复制危险偏见。 4. 学习方式的改变:让 AI 像人类顶尖人才一样学习,从基础开始,通过正规教育和实践,培养处理复杂情况和细微差别的直觉。例如在医疗保健领域,医生将把文档工作交给 AI 书记员,初级医疗服务提供者将依赖聊天机器人进行分诊等。 总之,人工智能将在学习的模式、方法和应用等方面带来不可逆转的改变。
2024-12-02
我要用prompt定义一个智能助手,最佳格式是什么样的
以下是定义智能助手的一些最佳格式和建议: 1. CRISPE 框架: Capacity and Role(能力与角色):明确智能助手的角色和能力,例如“你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析”。 Insight(洞察):提供背景信息和上下文,比如“处理一起复杂的合同纠纷案件,我们可以向智能助手提供案件的关键事实、相关法律以及案件涉及的背景”。 Statement(陈述):清晰说明希望智能助手做什么,例如“要求智能助手总结此案件中双方的诉求、检索法条、预测可能的判决结果”。 Personality(个性):指定智能助手回答的风格或方式。 Experiment(举例):通过举例进一步说明需求。 2. 学校通用场景中的示例: 创建课程计划助手:“我是教{……}的老师,帮我创建一份课程计划”。 写作素材收集助手:“提供{指定主题}的结论和数据,帮我提供写作素材”。 雅思写作助手:“我希望你作为雅思写作考官,帮我提升英语。我们现在开始,我的第一个问题是……” 3. 视频相关的提示格式: Specify Visual Details(指定视觉细节):包括颜色、灯光、摄像机角度和风格等视觉元素的描述。 Mention Desired Length and Format(提及期望的长度和格式):说明具体的时长(秒或分钟)或格式(宽高比、分辨率)。 Outline Audio Preferences(概述音频偏好):详细描述所需的音频元素,如背景音乐、旁白或音效,并说明是由智能助手生成还是自行提供。 Consider Ethical and Copyright Guidelines(考虑道德和版权准则):确保提示符合道德标准和版权法,避免侵权或涉及敏感话题。 您可以根据具体需求和使用的工具对这些模板和示例进行调整。记住,输出的质量很大程度上取决于您通过提示传达需求的清晰程度。
2024-11-28
人工智能的定义
人工智能是一门研究如何使计算机表现出智能行为的科学。最初,计算机遵循着明确的程序和算法进行受控计算。但对于一些任务,如根据照片判断一个人的年龄,我们无法明确其解法和步骤,无法编写明确程序让计算机完成,这类任务正是人工智能感兴趣的。 “智能”的概念没有明确的定义。阿兰·图灵提出了图灵测试,将计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,则认为该计算机系统是“智能”的。 在相关研究中,对于智能、人工智能和人工通用智能的定义存在多种观点和定义方式,但都存在问题或争议。例如,有以目标为导向的定义、围绕技能获取效率展开的定义等,但各自都有局限性。
2024-11-03