Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结

Answer

将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法:

  1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。
  2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。
  3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。
  4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。
  5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。
  6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。

在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
怎么建立知识库
以下是关于建立知识库的详细步骤: 在线知识库: 1. 点击创建知识库,创建一个如画小二课程的 FAQ 知识库。 2. 选择飞书文档。 3. 选择自定义的自定义。 4. 输入“”。 5. 飞书的文档内容会以“”区分开来,可点击编辑修改和删除。 6. 点击添加 Bot,并在调试区测试效果。 本地文档: 1. 本地 word 文件,注意拆分内容以提高训练数据准确度。 2. 对于画小二这个课程,80 节课程分为 11 个章节,不能一股脑全部放进去训练。 3. 首先将 11 章的大章节名称内容放进来,章节内详细内容按照固定方式进行人工标注和处理。 4. 选择创建知识库自定义清洗数据。 发布应用: 点击发布,确保在 Bot 商店中能够搜到,只有通过发布才能获取到 API。 通用步骤: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。 2. 选择知识库的格式,填写相关信息。目前(2024.06.08)Coze 支持文档、表格(CSV、Excel 等)、图片格式。 3. 对于表格数据,可以通过本地文件或 API 的方式上传,上传后的数据会按照索引列进行分片。一个团队内的知识库名称不可重复,必须是唯一的。 关于使用知识库,您可以参考教程:
2025-03-18
请问哪个平台支持上传私人知识库文件
以下平台支持上传私人知识库文件: 本地文档: 文本内容: 支持格式:.txt、.pdf、.docx。 操作步骤:在文本格式页签下选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。每个文件不得大于 20M,一次最多可上传 10 个文件。上传完成后选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度、设置文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址),最后单击下一步完成内容上传和分片。 表格数据: 支持格式:.csv 和.xlsx。 操作步骤:在表格格式页签下选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。每个文件不得大于 20M,一次最多可上传 10 个文件。配置数据表信息,包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取表头的列名,可自定义修改列名或删除某一列名)、指定语义匹配字段(选择作为搜索匹配的语义字段)。查看表结构和数据,确认无误后单击下一步,完成上传后单击确定。 Notion: 操作步骤:在文本格式页签下选择 Notion,然后单击下一步。单击授权,首次导入 Notion 数据和页面时需要进行授权。在弹出的页面完成登录,并选择要导入的页面。选择要导入的数据,然后单击下一步。选择内容分段方式,包括自动分段与清洗和自定义,最后单击下一步完成内容上传和分片。 自定义: 操作步骤:在文本格式页签下选择自定义,然后单击下一步。输入单元名称,然后单击确认。单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加 2000 个字符。单击保存。
2025-03-18
知识库搭建注意事项
以下是关于知识库搭建的注意事项: 1. 数据清洗方式: 可选择手动清洗数据以提高准确性,避免自动清洗数据可能出现的不准确情况。 对于本地文档,要注意合理拆分内容以提高训练数据准确度,不能将所有内容一股脑放入训练。 2. 在线知识库: 点击创建知识库,可创建如画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 选择飞书文档,选择自定义的自定义,输入。 点击添加 Bot 并在调试区测试效果。 3. 本地文档: 对于本地 word 文件,要注意拆分内容的方法。例如,对于画小二课程,将 80 节课程分为 11 个章节,先放入大章节名称内容,再按固定方式细化章节内详细内容。 选择创建知识库自定义清洗数据。 4. 发布应用: 点击发布,确保在 Bot 商店中能够搜到,否则无法获取 API。 5. 文档格式和分片策略: 以创建外贸大师产品的帮助文档知识库为例,可选择使用 Local doucuments 方式上传 Markdown 格式文档,每个问题以开头。 文档的分片策略会严重影响查询结果,RAG 方案存在跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等缺点。 此外,在信息管理和知识体系搭建中,“拎得清、看得到、想得起、用得上”是四个核心步骤: 1. 拎得清:主动选择和判断高质量、与目标相关的信息源,利用 AI 搜索引擎筛选信息,加入优质社群、订阅号等建立信息通路。 2. 看得到:确保所选信息能频繁且不经意地触达个人,通过浏览器插件、笔记工具等组织信息,使其易于检索和浏览。 3. 想得起:做好信息的索引和关联,存储时做好标记(关键词、tag)、选择合适存放位置,推荐使用 PARA 笔记法等方法组织串联信息。 4. 用得上:将积累的知识转化为实际行动和成果,在解决问题或创造价值时从知识库中调取相应信息。
2025-03-17
如何利用AI来打造自己的知识库?需要利用哪些软件?
以下是利用 AI 打造自己知识库的一些方法和可能用到的软件: 1. 飞书软件:例如“通往 AGI 之路”就是一个使用飞书搭建的 AI 知识库。您可以在飞书大群中与机器人对话获取资料。 2. Coze:在“大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库”中有相关介绍,能帮助您理解 AI 时代的知识库,包括其概念、实现原理和能力边界等。 3. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后可进行配置,包括选择大模型、文本嵌入模型和向量数据库。在 AnythingLLM 中可创建独有的 Workspace 来构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后可进行测试对话。 4. GPT:通过将文本拆分成小文本块并转换为 embeddings 向量,保存在向量储存库中作为问答的知识库。当用户提问时,将问题转换为向量并与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 希望以上信息对您有所帮助。
2025-03-17
知识库
以下是关于知识库的相关内容: 智能体创建: 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能出现数据不准的情况,手动清洗可提高数据准确性。参考课程:。 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,可选择飞书文档、自定义的自定义,输入后可区分内容,还可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度。例如画小二 80 节课程分为 11 个章节,不能一股脑全部放入训练,应先放入大章节名称内容,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到,否则无法获取 API。 概述: 扣子提供了几种存储和记忆外部数据的方式,以便 Bot 精准回复用户。知识库是大量知识分片,通过语义匹配为模型补充知识,以车型数据为例,每个知识库分段保存一种车型基础数据。同时还介绍了数据库、AI 便签、单词本等。 智能体“竖起耳朵听”: 扣子的知识库功能强大,可上传和存储外部知识内容,提供多种查找知识的方法,解决大模型有时出现的幻觉或专业领域知识不足的问题。在该智能体中使用了自己的知识库,收集了很多地道口语表达的短句,知识库可包含多种格式文件,此例中只用了文本格式,智能体回答用户时会先检索知识库内容。还可添加开场白提升体验。
2025-03-16
我需要搭建一个每个人都能使用的知识库
要搭建一个每个人都能使用的知识库,可以考虑使用 GPT 并借助 embeddings 技术。以下是相关步骤和原理: 1. 文本处理:将大文本拆分成若干小文本块(chunk)。 2. 向量转换:通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块,作为问答的知识库。 3. 问题处理:当用户提出问题时,先将问题通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量进行比对,查找距离最小的几个向量,提取对应的文本块,并与原有问题组合成新的 prompt 发送给 GPT API。 4. 容量限制:GPT3.5 一次交互支持的 Token 数量有限,embedding API 是解决处理大量领域知识的方案。 5. 理解 embeddings:embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。 例如,对于一篇万字长文,拆分成的 chunks 包含:文本块 1:本文作者:越山。xxxx。文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。文本块 3:《反脆弱》作者塔勒布xxxx。文本块 4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。如果提问是“此文作者是谁?”,通过比较 embeddings 向量,可以直观地看出文本块 1 跟这个问题的关联度最高,文本块 3 次之。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”这样大语言模型大概率能回答上这个问题。
2025-03-16
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17
什么是LLM
LLM(大型语言模型)是一种具有重要意义的人工智能系统,它具有以下特点和作用: 它不仅仅是一个聊天机器人,更像是新一代操作系统的核心程序。能够协调跨多种模式的输入与输出(如文本、音频、视觉),具备代码解释和运行程序的能力,具有浏览器/上网功能,包含用于文件和内部内存存储与检索的嵌入式数据库。 是 LangChain 平台与各种大模型进行交互的核心模型,是一个能够处理语言输入和输出的抽象概念,输入是字符串形式的用户请求或问题,输出也是字符串形式的模型回答或结果。其优势在于让开发者无需关心大模型的细节和复杂性,能灵活选择和切换不同大模型,还能让开发者自己封装自己的 LLM 以实现特定的语言逻辑和功能。 是一种非常聪明的人工智能系统,能够通过学习大量的文字数据来理解和生成自然语言。可以想象成一个超级有知识的朋友,能回答各种问题、写故事、完成作文。就像一个读了很多书、知识丰富的小朋友,虽然不是真人,却是一个能处理和学习海量文字数据的计算机程序,这些数据来源广泛。如今的搜索引擎背后可能就有 LLM 的支持,能给出更准确、完整的答案,有时像真正的专家一样解答问题。 总的来说,LLM 是一种通过学习大量文本数据,能够理解和生成自然语言的人工智能系统。
2025-03-10
LLM大模型与运维
以下是关于 LLM 大模型与运维的相关内容: 部署方面: 本地部署包括三大部分:本地部署大语言模型、本地部署 FastGPT+OneAPI、本地部署 HOOK 项目或 COW。 下载并安装 Ollama:根据电脑系统,从 https://ollama.com/download 下载,双击打开点击“Install”,安装完成后将下方地址复制进浏览器中确认:http://127.0.0.1:11434/ 。 下载 qwen2:0.5b 模型:Windows 电脑点击 win+R 输入 cmd 回车,Mac 电脑按下 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,然后复制命令行粘贴回车等待自动下载完成。 训练方面: 模型训练比推理复杂得多,是一个计算量极大的过程。获取参数面临计算复杂性问题。例如训练 Llama2 70B 这样的开源模型,需要约 10TB 的文本,通常来源于互联网的抓取,大约 6000 个 GPU,运行约 12 天,费用约 200 万美元,得到的参数文件约 140GB,压缩比约 100 倍,且是有损压缩。 整体架构方面: 基础层:为大模型提供硬件支撑,数据支持,如 A100、数据服务器等。 数据层:包括静态的知识库和动态的三方数据集。 模型层:有 LLm(如 GPT,一般使用 transformer 算法)或多模态模型(如文生图、图生图等,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。
2025-03-09
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
使用llm的爬虫工具推荐下,开源免费
以下是为您推荐的开源免费的使用 LLM 的爬虫工具: 1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。 2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。 3. GPT Crawler:主要运用 typescript 进行数据爬取。 4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。 同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。
2025-03-06
llm项目
以下是一些与 LLM 项目相关的信息: 开源中文大语言模型及数据集集合: LuotuoChineseLLM:地址为,囊括了一系列中文大语言模型开源项目,包含基于已有开源模型进行二次微调的语言模型、指令微调数据集等。 Linly:地址为,提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。 ChatYuan:地址为,是元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 ChatRWKV:地址为,开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),可以直接闲聊及进行诗歌、小说等创作。 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能:作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,即可让 LLM 获得稳定的 tool calling 能力。使用多个不具备 tool calling 能力的 LLM 作为测试模型,在多个工具调用任务上实验成功率为 100%。工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 XiaoHu.AI 日报 1 月 29 日: LLMsfromscratch 项目:详细解释 LLMs 的工作原理,提供创建自己的 LLM 的逐步指南,适合企业团队、初创公司和教育机构学习。链接: SliceGPT 微软开发的大语言模型压缩方法:在保持高性能的同时大幅减少模型参数,允许在更少的 GPU 上运行,提高运行速度,显著降低在消费级 GPU 上的总计算量。链接: VisualWebArena 自主智能体的视觉网络任务基准测试:评估智能体在网络环境中的规划、推理和执行任务能力,着重于视觉信息的重要性和多模态智能体评估,提供深入的定量和定性分析,揭示 LLM 智能体的限制。链接: 百川智能的 Baichuan 3 模型:中文任务评测表现卓越,超越 GPT4,在医疗领域和中华传统文化理解方面表现突出,引入创新技术,提高训练效率和数据质量。链接: Apple Vision Pro 最新宣传片:链接
2025-03-04