Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

那深度学习是监督学习、无监督学习还是强化学习呢?又或者他们四个是并列的?

Answer

深度学习是一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习和强化学习。监督学习是使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习没有标签的数据,算法自主发现规律,经典任务如聚类。强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。所以深度学习与监督学习、无监督学习、强化学习不是并列关系,而是其应用的一种方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
转行做AI产品经理的自学指南,并帮我找到学习资源途径
以下是一份转行做 AI 产品经理的自学指南及学习资源途径: 自学指南: 1. 了解 AI 基础知识,包括常见的概念、技术和应用。 2. 学习产品管理的核心知识,如需求分析、用户体验设计等。 3. 关注技术原理,例如思维链、RAG、PAL、ReAct 等,可通过相关论文和科普视频进行学习。 4. 积累实践经验,尝试参与实际项目或模拟项目。 学习资源途径: 1. WaytoAGI(通往 AGI 之路):这是一个致力于人工智能学习的中文知识库和社区平台,提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 相关技术论文:虽然对于小白有难度,但可以借助 AI 辅助阅读,完成一定知识储备。 3. 科普视频:如林粒粒呀的相关科普视频。 4. 行业访谈:例如安克创新 CEO 阳萌的访谈,获取前沿观点和启发。 此外,您还可以参考北京分队中相关人员的经验,如 Sundy 从产品运营转行当 AIGC 产品经理的经历。
2025-02-21
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-21
普通人怎么学习ai赚钱
以下是为普通人学习 AI 赚钱提供的一些指导: 对于零基础小白: 1. 网上有很多基础课程可供选择,例如科普类教程。 2. 阅读 OpenAI 的官方文档,理解每个参数的作用和设计原理,避免在面试中出现知识盲区。 3. 推荐使用一些练手的 Prompt 工具。 岗位技能要求: 1. 具备综合的个人能力,包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象并集成成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 案例分享: 1. 二师兄在房地产行业从业二十年,计算机零基础。他从二月开始学习 AI 绘画,三月啃完相关教程并开始炼丹,四月尝试 AI 变现项目,五月加入 Prompt battle 社群学习 Midjourney。 需要注意的是,公司招聘 AI 提示词工程师岗位时,通常不会多招其他懂 AI 的岗位,因此需要个人具备较为全面和敏捷的能力。同时,若想将 AI 用于赚钱,还需不断探索和实践,找到适合自己的变现途径。
2025-02-21
怎么从零开始学习AGI
从零开始学习 AGI 是一个长期的过程,需要耐心和持续的努力。以下是一些建议: 1. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 2. 学习前要澄清自己的状态,比如可能不理解 AI 和提示词工程等。 3. 学习过程中要注重兴趣,关键词如“少就是多”“先有个初识”“目录索引推荐”“先动手”等。 4. 学以致用,通过学习分享不断填补知识的缝隙来成长。 5. 像马斯克一样,从基础的数学开始学习,逐步扩展到相关的高级领域。 记住,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2025-02-21
新人怎么学习ai
对于新人学习 AI ,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-21
有java scala hadoop spark flink开发经验员工入门AI 学习提纲以及对应学习内容
以下是为有 Java、Scala、Hadoop、Spark、Flink 开发经验的员工提供的 AI 入门学习提纲及对应学习内容: 1. 学习资源推荐: 系统化学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理学习笔记与大家交流互动。 社区共创学习:参与社区共创活动,通过做小项目反向推动学习。 参考资料:A16Z 推荐的 AI 相关原理内容,包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 官方 cookbook:open AI 的官方 cookbook,小琪姐做了中文精读翻译。 历史脉络资料:整理 open AI 的发展时间线、万字长文回顾等。 2. 学习路径: 从提示词开始学习与各类模型的对话,了解其重要性和结构化提示词的优势。 学习过程中可以先从国内模型工具入手,不花钱,若想进阶再考虑高阶方向。 3. 其他学习方式: 创作者将内容做成可视化形式,后续会发到群里。 上传相关 PPT 用作参考。 从温达、李弘毅老师课程等学习入门。 了解时代杂志评选的百位领军人物。 学习 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,可通过与 AI 对话或李继刚老师的课程来理解。 订阅赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等获取最新信息并投稿。 参与社区活动,如 AIPU、CONFIUI 生态大会、每月的切磋大会、新活动 AIPO 等。
2025-02-21
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题,有什么ai工具,可以帮助我
目前在市场上,还没有能够完全替代家教老师团队进行 1v1 辅导,包括根据学生当天学习课程出题、定时监督并整理错题等全方位功能的单一 AI 工具。但您可以考虑结合使用以下几种 AI 相关的技术和工具来部分实现您的需求: 1. 智能学习管理系统:这类系统可以根据学生的学习进度和表现生成一些练习题,但可能无法完全针对当天学习的课程精准出题。 2. 自然语言处理工具:帮助分析学生的学习情况和问题,为后续的辅导提供一定的参考。 需要注意的是,AI 工具在教育中的应用仍处于不断发展和完善的阶段,不能完全替代人类教师的情感支持、个性化引导和灵活应变能力。
2024-11-18
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题
目前的情况来看,使用 AI 代替家教老师团队进行 1v1 辅导,包括出题、监督和整理错题等工作,虽然具有一定的可行性,但也面临一些挑战。 从出题方面,AI 可以根据学生当天学习的课程内容,利用其强大的数据分析和算法能力生成相关题目。但需要确保题目质量和针对性,能够准确覆盖重点知识点,并适应学生的学习水平。 在监督方面,AI 可以通过设定时间提醒等方式,督促学生按时完成任务。然而,它可能无法像人类教师那样敏锐地察觉学生的情绪和学习状态变化,及时给予鼓励和支持。 对于整理错题,AI 能够快速分类和分析错题,但在解释错题原因和提供个性化的学习建议上,可能不如人类教师那么深入和灵活。 总之,虽然 AI 可以在一定程度上辅助这些工作,但完全替代家教老师团队可能还不太成熟,或许可以将 AI 与人类教师相结合,以达到更好的辅导效果。
2024-11-18
怎么监督AI被动的做出一系列违法的事情
监督 AI 被动做出违法事情可从以下方面考虑: 1. 对于高风险人工智能系统,在入市前的设计应保证能实施人为干预。增加人为监督的原因包括: AI 可能做出涉及道德和伦理问题的决策,如侵犯个人隐私、存在不公平偏见和歧视等,人类监督可预防相关道德风险。 若 AI 产生错误决策甚至违法行为,因 AI 无法承担法律责任,责任由人类承担,所以需要人类监督以确保其行为合法。 AI 不能完全理解人类社会,在人类监督下能正确处理复杂的人类社会问题。 高风险的人工智能系统往往需要更高程度的人为监督,以降低其对个人、环境和社会的损害,确保其运行符合人类社会的价值观和道德观。 AI 系统决策过程不透明,人类监督可要求其提供更多透明度和可解释性,便于理解和质疑决策。 人为监督能促进 AI 的普及与发展,帮助建立公众信任,提高社会接受度。 2. 像 OpenAI 这样的公司,无论如何重新设计产品以减少不当行为,未来的模型仍可能因足够聪明而难以被控制。若在确保模型安全性方面做得过度,可能削弱产品功能。 3. 对于监管,OpenAI 的 Altman 虽将自己定位为监管拥护者,但也面临一些指责,如被认为玩弄监管程序以阻碍小型初创企业发展并给自己带来优势。不过他原则上赞同由国际机构监督 AI 的想法,但对一些拟议规则持有不同意见。OpenAI 拒绝相关批评,认为通过分析用户反应才能使未来产品符合道德规范。
2024-11-13
抽象理解用户视角的半监督模式
半监督学习是一种机器学习模式,它结合了有监督学习和无监督学习的特点。在半监督学习中,模型可以同时使用标记数据和未标记数据进行训练。标记数据通常是指已经被人类标注或分类的数据,而未标记数据则是指没有被人类标注或分类的数据。通过使用半监督学习,模型可以利用未标记数据中的信息来提高其性能和泛化能力。 从用户的角度来看,半监督学习可以被视为一种更加灵活和高效的机器学习模式。在传统的有监督学习中,模型需要大量的标记数据来进行训练,这通常需要人类专家进行手动标注,这是一个非常耗时和昂贵的过程。而在半监督学习中,模型可以利用未标记数据来进行训练,这可以减少对标记数据的需求,从而降低了数据标注的成本。此外,半监督学习还可以提高模型的泛化能力,因为模型可以从更多的数据中学习到更多的信息。 半监督学习的另一个优点是,它可以更好地处理现实世界中的数据。在现实世界中,大量的数据通常是未标记的,例如社交媒体数据、图像数据和音频数据等。通过使用半监督学习,模型可以利用这些未标记数据来进行训练,从而更好地处理现实世界中的数据。 总的来说,半监督学习是一种非常有前途的机器学习模式,它可以提高模型的性能和泛化能力,同时减少对标记数据的需求,从而降低了数据标注的成本。从用户的角度来看,半监督学习可以被视为一种更加灵活和高效的机器学习模式,它可以更好地处理现实世界中的数据。
2024-05-06
那请帮我列举Ai下有哪几个子领域(他们必须是并列关系),机器学习下又有哪几个子领域
以下是 AI 的子领域: 1. 机器学习 2. 计算机视觉 3. 自然语言处理 4. 语音识别 5. 智能机器人 机器学习的子领域包括: 1. 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习,如聚类、降维等算法。 3. 强化学习
2025-01-21
按你这个分类,机器学习和深度学习是并列的?
机器学习和深度学习不是并列的关系,而是包含关系。 机器学习是人工智能的一个子领域,其核心是让计算机通过对数据的学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供大量数据让机器找出隐藏模式或规律,进而预测新的、未知的数据。 深度学习是机器学习的一个子领域,它尝试模拟人脑的工作方式,创建人工神经网络来处理数据。这些神经网络包含多个处理层,深度学习模型能够学习和表示大量复杂的模式,在图像识别、语音识别和自然语言处理等任务中表现出色。 总之,深度学习是机器学习的一个分支,二者存在包含与被包含的关系。
2025-01-21
偏推理型的内容,怎么提升模型的推理深度及准确度?
提升模型推理深度及准确度的方法包括以下几个方面: 1. 扩大模型规模:随着模型规模的扩大,其推理能力会得到提升,类似于 AlphaGo 或 AlphaZero 的工作方式,通过蒙特卡罗推演来修改评估函数,从而提高推理精度。 2. 引入多模态学习:引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习。 3. 优化训练方法: RLHF(Reinforcement Learning from Human Feedback):模型在这个过程中的目标是最大程度地获得人类的认可,通过奖励模型来衡量。 结合不同的推理能力提高途径:将生成不同的思维链(CoT)并选择有效路径的方法,与在部署时用大量计算进行推理的方法结合起来。 4. 改进模型结构和算法: 规模和算法是科技进步的关键因素,数据和计算规模具有决定性作用。 在模型之上添加启发式方法或增加模型本身的规模。 此外,Hinton 还提到了一些相关观点,如最合理的模型是将符号转换成大向量并保留符号的表面结构,大型语言模型通过寻找共同的结构来提高编码效率,以及即使训练数据中有错误,大型神经网络也具有超越训练数据的能力等。
2025-02-21
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
deepseek深度思考的机制和ChatGPT的深度思考有什么不一样
DeepSeek R1 与 ChatGPT 的深度思考机制存在以下不同: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,同属于基于强化学习 RL 的推理模型。而 ChatGPT4 采用预训练+监督微调(SFT)。 2. 思考方式:在回答用户问题前,DeepSeek R1 会先进行“自问自答”式的推理思考,从用户初始问题出发,唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。而 ChatGPT 在此方面的表现有所不同。 3. 应用场景:DeepSeek R1 适用于高难度数学和编程问题,但计算成本更高。日常查询中,ChatGPT 更快、更适合简单咨询。 4. 优势特点:DeepSeek R1 更加透明,研究细节可复现,权重可下载。
2025-02-17
deepseek深度思考的机制
DeepSeek 的深度思考机制包括以下方面: 在案例方面,如为李世民创作独白时,会综合考虑各种元素,包括正当化理由、文学修辞、时间设定、历史语境、人物性格和处境等,经过细腻、严谨、自洽、深刻的思考后输出结果。 性能监测体系方面,包括需求理解准确率(复杂需求首轮响应匹配度)、知识迁移能力(跨领域案例应用的合理性)、思维深度指数(解决方案的因果链条长度)。新一代交互范式建议采用“人机共谋”模式、启动“思维可视化”指令、实施“苏格拉底式对话”,通过将深度思考能力与场景化需求结合,可解锁“认知增强”模式,在商业决策、创新设计、技术攻坚等场景实现思维能效的指数级提升,建议通过 3 轮迭代测试建立个性化交互模式。 在使用技巧方面,先了解其优势和特点,如它是推理型大模型,不需要用户提供详细步骤指令,能理解“人话”表达的需求,进行深度思考,还能模仿不同作家的文风写作。更多提示词技巧可查看 查看。
2025-02-17
我需要一款免费的AI软件 可以帮助我将网课视频内容进行深度总结,并形成听课笔记和思维导图
以下为您推荐两款可能满足您需求的免费 AI 软件: 1. 360AI 浏览器: 功能 1:看长视频,敲黑板划重点。可以帮您观看 B 站的字幕视频,短短几秒就能总结概要生成脑图,告诉您视频的重点和高潮剧情在哪。例如用 360AI 浏览器观看《2007 年 iPhone 发布会》,能生成内容摘要和思维导图,视频全程 20 个看点,点击其中任一看点,就能定位到进度条对应位置,直接观看感兴趣的重点内容。还可以对英文字幕进行翻译,帮助您理解内容。同时可通过 AI 助手对话,就视频内容进行追问和扩展提问。 功能 2:阅读国内外长论文和著作,自动翻译自动提炼,3 分钟 get 要点。目前支持 360k 长文本阅读。以《三体》为例,360AI 浏览器可以呈现《三体》两册完整的故事框架,还支持生成思维导图。 官网地址:ai.se.360.cn 2. Boardmix 博思 AI 白板:在 12 月数据国内总榜中,其属于思维导图分类。
2025-02-14
什么是深度学习
深度学习是源于新的方法和策略,旨在通过克服梯度消失问题来生成深层的非线性特征层次,以训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流,便于训练深层结构。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。自 2013 年以来,其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。其突破性研究成果包括反向传播、更好的初始化网络参数等。 在相关技术名词中,深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。
2025-02-14