直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

描述下人工智能简史

回答

人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现的任务复杂且成本高,无法大规模拓展应用场景,导致 20 世纪 70 年代出现“人工智能寒冬”。

随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词,多数成功案例基于神经网络。

在创建国际象棋计算机对弈程序方面,早期如 Eliza 基于简单语法规则,将输入句子重述为问题;现代助手如 Cortana、Siri 或谷歌助手是混合系统,用神经网络转换语音并识别意图,再执行操作。未来有望出现完整基于神经网络的独立处理对话模型,如最近的 GPT 和 Turing-NLG 系列神经网络已取得巨大成功。

早期国际象棋对弈程序以搜索为基础,发展出阿尔法-贝塔剪枝搜索算法,搜索策略在对局结束时效果好,开始时因搜索空间大需改进,随后采用基于案例的推理,在知识库中找相似案例决定棋步。能战胜人类棋手的现代对弈程序基于神经网络和强化学习,通过与自己对弈从错误中学习,学习速度比人类快。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能简介和历史

人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

人工智能简介和历史

早期的此类程序,如[Eliza](https://en.wikipedia.org/wiki/ELIZA),基于非常简单的语法规则,并将输入的句子重新表述为一个问题。Cortana、Siri或谷歌助手(Google Assistant)等现代助手都是混合系统,它们使用神经网络将语音转换成文本,并识别我们的意图,然后采用一些推理或明确的算法来执行所需的操作。未来,我们可以期待一个完整的基于神经网络的模型来独立处理对话。最近的GPT和Turing-NLG系列神经网络在这方面取得了巨大成功。

人工智能简介和历史

早期的国际象棋对弈程序是以搜索为基础的——程序尝试估计对手在给定棋步数量下可能走的棋步,并根据在几步棋内所能达到的最佳位置选择最佳棋步。这带来了[阿尔法-贝塔剪枝](https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning)搜索算法的发展。搜索策略在对局即将结束时效果很好,因为此时搜索空间对应的棋步可能性局限在非常小的范围内。然而在对局刚刚开始时,搜索空间非常巨大,需要考虑通过学习人类棋手之间的现有对局来改进算法。随后的实验采用了[基于案例的推理](https://en.wikipedia.org/wiki/Case-based_reasoning),即程序在知识库中寻找与当前棋局位置非常相似的案例,以此来决定自己的棋步。能够战胜人类棋手的现代对弈程序都基于神经网络和强化学习,程序通过长时间与自己的对弈,从自己的错误中学习,以此来学会下棋,这与人类学习下棋的过程非常相似。不过,计算机程序可以用更少的时间下更多的棋,因此学习速度更快。✅对人工智能玩过的其他游戏做一个小调研。同样,我们可以看到创建“会说话的程序”(可能通过图灵测试)的方法是如何变化的:

其他人在问
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将制定内容认证和水印的指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
如何将传统知识库通过LLM能力转化成更智能与精细化的知识库?包括但不限于分段、QA问答和图片解析描述和总结
将传统知识库通过 LLM 能力转化为更智能和精细化的知识库是一个复杂但可行的过程,以下是一些关键步骤和方法: 1. 数据预处理:对传统知识库中的内容进行清理、格式化和标准化,确保数据的质量和一致性。 2. 内容分段:根据主题和逻辑结构,将长篇的知识内容合理分段,使信息更易于理解和处理。 3. 提取关键信息:从文本中提取重要的概念、实体和关系,为后续的问答和总结做准备。 4. 构建 QA 问答对:分析知识库中的内容,设计有针对性的问题和准确的答案,形成问答对,以方便用户快速获取所需信息。 5. 图片解析描述:对于包含图片的内容,使用图像识别技术提取关键元素,并进行详细的描述和解释。 6. 总结归纳:对分段后的内容进行总结,提炼核心要点,帮助用户快速了解主要内容。 在实施过程中,需要不断优化和调整方法,以确保转化后的知识库能够满足用户的需求,提供更高效和准确的服务。
2024-11-18
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
用一段话描述一下讯飞智文的产品功能
讯飞智文是由科大讯飞推出的 AI 辅助文档编辑工具。它充分利用了科大讯飞在语音识别和自然语言处理领域的技术优势,可能具备智能文本生成、语音输入、文档格式化等功能。其目的在于提高文档编辑的效率,尤其在处理大量文本内容时,能够帮助用户迅速整理思路、优化文案,并生成结构化的文档。您可以通过 https://zhiwen.xfyun.cn/ 了解更多详细信息。
2024-11-14
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
我想知道flux相关的提示词描述
Fluffy 相关提示词描述如下: 含义:这个词用来描述某种质地柔软、轻盈、松散或有蓬松感的物体,常用于适配动物的毛发、云彩、食物、布料,美容化妆等多种材料和场景,着重营造一种温馨、舒适、轻松的氛围。 主题风格: 作用: 增强感官体验:Fluffy 描述的物体通常能提供愉悦的触感体验。 营造舒适氛围:在家居装饰、服装设计等方面,营造一种温暖和舒适的氛围。 吸引视觉注意:在广告和视觉艺术中,fluffy 物体常常被用来抓住观众的目光。 技巧: 材料选择:纤维结构和化学组成的不同,造就了不同的手感和光泽,比如羊毛和棉花。 毛发渲染:专门用于生成和渲染细长、柔软的物体,如动物毛发、人类头发、草地等。 材质特性:类似羽毛等轻盈蓬松材质应考虑空气动力学效应——如何在空中漂浮或飘动。 灯光运用:使用柔光或特定角度的照明来突出材质的轻盈和柔软。 应用: 家居和室内设计:Fluffy 的枕头、抱枕、地毯等家居用品。 时尚与服装:在服装设计中,如毛衣、围巾和冬季外套等,保暖性与时尚感兼顾。 食品工业:在食品制作中,如蛋糕、面包、甜点等,fluffy 的质地是吸引消费者的一个重要因素。 动物和宠物产品:宠物床垫、玩具等,fluffy 的材质可以提供给宠物更大的舒适感。 广告和市场营销:使用 fluffy 的概念在广告中创建吸引人的、温馨的图像。
2024-11-09
详细描述AI大模型历史
AI 大模型的发展具有丰富的历史。 早期阶段,人工智能经历了从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统等的发展。 随着技术的进步,大模型逐渐兴起。其由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据质量对生成理想的大模型至关重要。 近年来,从 2022 年开始掀起了生成式 AI 的革命。生成式 AI 是深度学习中的一个细分流派,相较之前的所有 AI 实现方法,在结果质量和效果上有了根本性、跨时代的进步。在某些细分场景应用中,甚至让人感觉通过了图灵测试。 随着大模型技术愈发成熟、规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。如今,大模型和多模态模型呈现出百花齐放的态势。
2024-11-05