直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

机器学习模型怎么做销量分析

回答

以下是关于如何使用机器学习模型进行销量分析的分步骤介绍:

第一步:安装运行需要的依赖项。

第二步:准备数据集。

  • 用于实验可以尝试用模拟数据集,模拟数据的批次是 117,跑出来的形状是 117 组数据,训练集占 78%(91 组),测试集占 22%(26 组)。
  • 也可以使用自己的数据集。若本地运行,可让 GPT 改成遍历本地文件地址。

第三步:拆分数据。

第四步:数据预处理。 由于实际数据绝对值落差很大,比如点击率(CTR)通常只有 1%,而媒体花费可能上百万,会影响模型对于每个因素的贡献率判断,因此要做缩放处理(归一化),让每个变量之间的关系对等。

第五步:初始化模型。 这一步数据集训练最费时间,取决于数据量大小和训练步长。

第六步:运算可视化。 自由度较高,常用的例子有:

  • 损失值(预测数值和实际数值的差异,用于辨别模型的准确性,曲线越一致,模型性能越好,极端情况可能有模型过拟合,此时可通过非线性函数处理)。
  • 绘制残差图(评估拟合性)。
  • 所有单一变量对最终销售的贡献。
  • Baseline 预测(在没有任何外因干预的情况下,销售额的走势,这里用的是模拟数据,趋势不准)。
  • 所有外因对销售的贡献度。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

[应用开发] 轻量化MMM (Marketing Mix Modelling) 的部署运行

用于实验的话,可以尝试用模拟数据集:模拟数据的批次是117,所以跑出来的形状是117组数据,训练集78% = 91,测试集22% = 26也可以用自己的数据集。如果本地运行的话,可以让GPT改成遍历本地文件地址[heading2]第三步:拆分数据[heading2]第四步:数据预处理[content]由于我们实际的数据绝对值落差会非常大,比如点击率(CTR)通常只有(1%),而媒体花费可能会是上百万,会影响模型对于每个因素的贡献率判断,因此这里会做一个缩放处理(归一化),让每个变量之间的关系是对等的。[heading2]第五步:初始化模型[content]这一步数据集训练是最费时间的,取决于数据量的大小和训练步长[heading2]第六步:运算可视化[content]这里的自由度就比较高了,我举了一些常用的例子供大家参考,也可以根据自己的需求增加自己需要的可视化图表损失值(预测数值和实际数值的差异,用于辨别模型的准确性,曲线越一致,模型性能越好,极端情况下可能会有模型过拟合的情况,这时候可以通过一些非线性的函数进行处理)绘制残差图(评估拟合性)所有单一变量对最终销售的贡献Baseline预测(在没有任何外因干预的情况下,销售额的走势,这里用的是模拟数据,趋势不准)所有外因对销售的贡献度

其他人在问
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
如何用大模型做销量预测
用大模型做销量预测可以从以下几个方面考虑: 1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。 2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。 3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。 4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。 5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。 6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。 关于大模型相关的模型下载和安装: 1. 模型下载: Civitai(C 站):https://civitai.com/ ,可通过点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等,还可通过点击左上角“Images”查看他人已做好的图片并获取相关模型。 2. 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
2024-10-22
有什么AI 分析工具可以用来研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。
以下是一些可用于研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息的 AI 分析工具: 1. 市场分析方面:有能够处理大量数据的工具,可帮助您快速了解市场动态,比如识别哪些产品受欢迎、价格区间以及销量等关键信息。 2. 关键词优化:部分 AI 工具可以分析和推荐高流量、高转化的关键词,以优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:一些 AI 设计工具能根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具能够撰写有说服力的产品描述和营销文案,从而提高转化率。 5. 图像识别和优化:借助 AI 图像识别技术可以选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:某些 AI 工具可以分析不同价格点对销量的影响,协助制定有竞争力的价格策略。 7. 客户反馈分析:通过 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:利用 AI 可根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 此外,汽车公司也会使用 AI 来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。中小企业还能通过使用 AI 工具分析大量的客户和市场数据,为营销、产品开发等部门提供基于数据的建议和指导,形成数据驱动决策的闭环,不断优化业务。
2024-08-18
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
我希望做一个回答用户问题的聊天机器人,如何用rag来做
要使用 RAG(RetrievalAugmented Generation,检索增强生成)来做一个回答用户问题的聊天机器人,可以按照以下步骤进行: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 URL 提取内容,如需接收多个 URL 可稍作改动。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量:使用文本向量模型 bgem3(可从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3 ),通过 FAISS 创建一个高效的向量存储。 4. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 5. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 6. 技术栈选择:经过调研,可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。 Langchain 简介:是当前大模型应用开发的主流框架之一,提供一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama 简介:是一个开箱即用的用于在本地运行大模型的框架。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
2024-11-20
如何学习开源机器人,要求是ROS操作系统,如何购置相应的机器人
学习开源机器人并基于 ROS 操作系统购置相应机器人,您可以从以下几个方面入手: 1. 控制系统:负责处理传感器数据、规划路径和执行任务,并与其他子系统协作。通常由嵌入式计算设备或工业计算机组成,通过运行控制算法(如 PID 控制、深度学习模型等)决定机器人运动和操作。 2. 伺服驱动系统:负责驱动机器人关节和执行机构,实现精确运动控制。一般包括伺服电机、伺服驱动器和指令机构。伺服电机作为执行机构实现运动,伺服驱动器作为功率电源控制电机运动,指令机构发出脉冲或速度信号配合工作。能进行速度与转矩控制,以及精确、快速、稳定的位置控制,其结构通常包括电流环、速度环和位置环三个闭环控制。 3. 交互设备:常见的有麦克风、遥控器等,尤其是带屏遥控器,集成了显示屏和控制功能,允许用户直接在遥控器上查看实时图像和进行各种操作。 4. 软件中间件:机器人操作系统中间件负责硬件抽象、设备驱动、库函数、可视化、消息传递和软件包管理等。最常用的元操作系统是 ROS(Robot Operating System),它并非真正的操作系统,而是运行在 Ubuntu 上的软件框架。ROS 将机器人软件功能封装为节点,支持节点间分布式、点对点通信,并由主节点(master)管理调度网络中各节点通信过程。不同节点可使用不同编程语言,可分布式运行在不同主机,这种设计使机器人各模块能松耦合协同工作,便于模块化修改和升级,提高系统容错能力。 在购置相应机器人时,您需要考虑机器人的功能需求、性能指标、价格预算等因素,选择适合您学习和研究的型号。
2024-11-19
怎么制作一个桌面智能机器人
制作桌面智能机器人可以参考以下步骤: 1. 利用 RPA 技术: 可以通过拖拉拽指令控件来构建机器人任务。例如,以在京东查询感冒灵并采集价格为例,包括打开浏览器、填写搜索框、点击搜索、采集数据等步骤。 采集数据后会生成数据表格,编辑器有拖拉拽功能适合业务人员,也可切换为 Python 界面写代码,还封装了很多控件,如 Excel 控件等。 RPA 机器人可通过触发器设置,像搭建奥康 1700 多个脚本的案例还有方太 450 多个基线等,交付的是动态能力。 RPA 加上 AI 效率极大提升,数字化分标准化、自动化、RPA 加 AI 三个阶段。 2. 使用 Coze 平台: 准备一个 Coze 账号,这是一个免费的 AI 机器人搭建平台。 准备一台能够上网的电脑。 用 Coze 搭建的 AI 机器人目前可以发布在“微信(订阅号/服务号/微信客服)、飞书、豆包、Bot Store、掘金”几个渠道,也可以通过网页地址的形式分享。 需要注意的是,不同的方法和平台可能有其特定的要求和特点,您可以根据自己的需求和技术水平选择适合的方式。
2024-11-19
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
最近AGI机器人特别火,请帮我找出相关新闻
以下是一些与 AGI 机器人相关的新闻: :随着 OpenAI 聊天机器人 ChatGPT 的热潮持续,探讨其如何帮助创建用户体验调查问卷或其他调查问卷。 :给 25 个 AI 代理人动机和记忆,并将它们放在模拟城镇中,其行为被评价比人类角色扮演更“人类化”。 :ChemCrow 是一个 LLM 化学代理,能在合成、药物发现和材料设计等领域执行任务,并集成 13 个专家设计的工具以增强性能。 :OpenAI 发布 GPT4 被证明是生成 AI 的一小步,对 AGI 而言是一大步,自 2022 年 11 月发布以来吸引众多用户和媒体关注,此工作是对 ChatGPT 的首次全面审查。 :有人让 AutoGPT 查找最近一个月的开源相关新闻并汇总成 word 文件,还有人在相关项目基础上做了改进和增强的新项目,如 TeenageAGI、BabyAGIasi、TypeScript 版本的 AutoGPT 等。 :特斯拉训练机器人“Optimus”抓取物体,通过人类示范学习。还提到当训练比 GPT4 大 100 倍的模型时在图像识别、生成图像和视频等方面的预测。
2024-11-10
如何起步开始学习ai设计
以下是关于如何起步开始学习 AI 设计的一些建议: 1. 阅读相关文章: 如 ,了解市场动态和生成式 AI 商业模式的相关问题。 ,认识到尽早学习的重要性,避免被其他熟练掌握 AI 动力设计技巧的设计师超越。 ,了解设计的当前状态、常见问题及实用技巧。 ,学习最佳实践和利用 UX 策略使 AI/ML 系统更易于解释和透明。 2. 利用工具: 了解星流一站式 AI 设计工具,在入门模式下,熟悉右侧生成器的图片参考部分,如快速参考、风格迁移、Tile 分块、重新上色等功能。 掌握基础模型,包括星流通用大模型及基础模型 F.1、基础模型 XL、基础模型 1.5 等,了解它们在效果和生成速度上的差异。 了解增强模型,可通过收藏、查看例图和选择风格等方式进行使用。
2024-11-22
小白学习AI怎么开始
对于小白学习 AI,可以从以下几个方面开始: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-22
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
想学习AI编程需要从哪里开始,有什么资源吗
如果您想学习 AI 编程,可以从以下几个方面开始,并参考以下资源: 开始的方向: 1. 明确编程目标:确定您希望通过 AI 编程实现的具体任务或项目。 2. 了解 AI 编程的边界和限制:明白在何种情况下需要编程,何种情况下可以利用现有工具和资源。 学习资源: 1. 掌握 Python 基础: 基本语法:包括变量命名、缩进等规则。 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数、理解参数和返回值、掌握作用域和命名空间。 模块和包:学会导入模块和使用包来扩展功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常及如何处理程序中的错误。 文件操作:掌握文件读写和文件与路径操作。 2. 在线教程和课程:例如“写给不会代码的你:20 分钟上手 Python + AI”。 3. 项目实践:通过实际项目来巩固所学知识。 开发建议: 1. 对于复杂的项目,如 P2P 传输程序,要充分考虑项目初始化、环境配置、库的选择等。 2. 对于 Rust 环境配置,可通过官网获取安装指南,使用 rustup 工具管理 Rust 版本。使用 cargo new <project_name>创建新的 Rust 项目,生成基本文件结构和 Cargo.toml 文件来管理项目依赖。 在学习过程中,优先寻找线上工具、插件和本地应用,先找现成的开源工具和付费服务,只有在没有现成方案时再考虑自己编程。
2024-11-21