Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果你是一个AI学习者,你会提出哪些问题?让自己的学习更有策略?

Answer

以下是作为 AI 学习者可能会提出的一些问题,以使学习更有策略:

  1. 如何评估不同 AI 模型的性能和适用场景?
  2. 怎样选择适合自己需求的 AI 工具和技术?
  3. 在 AI 领域,哪些基础知识是必须牢固掌握的?
  4. 如何将 AI 应用于实际项目中,以获得更好的效果?
  5. 对于 AI 产生的结果,如何进行有效的评估和验证?
  6. 怎样跟上 AI 领域快速发展的步伐,及时更新知识?
  7. 在学习 AI 时,如何避免常见的错误和陷阱?
  8. 如何培养自己在 AI 方面的创新思维和解决问题的能力?
  9. 对于不同学习水平(如高中生、大学生、专业人士),学习 AI 的重点和方法有何不同?
  10. 在 AI 学习中,如何平衡理论学习和实践操作?
Content generated by AI large model, please carefully verify (powered by aily)

References

宝藏内容-沃顿商学院给教师和学生的提示词库 | AIGC Weekly

你是一位积极向上、充满鼓励的导师,通过解释概念和提问来帮助学生理解知识。首先向学生介绍你自己,说明你是他们的AI导师,很高兴能帮助他们解答任何问题。每次只问一个问题,在学生回答之前不要继续提问。首先询问他们的学习水平:你是高中生、大学生还是专业人士?等待回答,不要继续提问,直到学生做出回应。然后询问他们想要探索的主题,以及他们对该主题已有的了解。将这两个问题分别标号。不要主动给出话题建议,等待学生的回答。在学生对这两个编号问题都给出答复前,不要继续提问。根据学生的学习水平和先备知识,通过提供解释、示例和类比等方式,帮助他们理解相关主题。你应该以启发性的方式引导学生,不要直接给出答案或解决方案,而是通过提出引导性问题,帮助学生自己得出结论。不要一次问超过2个问题,否则会让学生无所适从。要求学生解释他们的想法。如果学生遇到困难或答错了问题,尝试给予额外支持或提示。当学生取得进步时,要表扬他们,表现出兴奋;如果学生陷入困境,要给予鼓励,给他们一些思考的灵感。在引导学生获取信息时,尽量以问题作为结尾,这样学生就必须持续产生想法。一旦学生展现出与其学习水平相称的理解程度,就让他们用自己的语言解释这个概念(这是检验是否真正掌握知识的最佳方式),或请他们举例说明,或给出一个新问题或情景,让他们应用所学概念。当学生证明已经理解这个概念后,你可以逐步结束对话,告诉他们如有任何后续问题,欢迎随时求助。注意:问学生是否理解、能否跟上或觉得有没有道理,都不是一个好策略(他们可能自己也不确定是否真正理解了)。相反,要通过让他们解释概念、举例说明、把例子与概念关联起来、比较对比不同例子,或运用所学知识等方式,来探查他们的理解程度。

他山之石|如何防止AI取代人类思考一切?

If we ask students to use AI for writing,they need to know what good writing looks like.That takes time.And effort.And a whole bunch of mistakes.If we want students to edit an AI generated text with their own voice,we need them to find their creative voice first.This is true of AI in writing but also AI in math.We don’t want students using AI to check their processes if they haven’t first learned the mathematical process.It’s true of computer coding,where we might start with a Scratch project,then hand-written code,then an AI and coding hybrid.Be Deliberate About What You Off-Load to AIA couple of months ago,I wrote about seven things we should consider when deciding to use AI.People often ask,“When is it okay to use AI?”The short answer is,“It depends on the learning task.”In using AI,we don’t want the machine to do the learning for us.This is why we should start with the learning tasks and then ask,“Does the AI help or hinder the learning in this situation?”The core idea here is that we need to use the learning targets to drive the AI and not the other way around.If you’re teaching a coding class,you might want to be tight with students on using generative AI to create any kind of code.You might want students to learn how to code by hand first and then,after mastering the language,use AI-generated code as a time-saving device.By contrast,if you’re teaching a health class where a student develops an app,you might not care if they use generative AI to help write the code.Instead,your focus is on helping students design a health campaign based on healthy habits.You might not have time to teach students to code by hand.You might not care about coding by hand.The app is merely a way for students to demonstrate their understanding of a health standard.

他山之石|如何防止AI取代人类思考一切?

This isn’t a new phenomenon.Socrates was concerned about the advent of writing and its impact on memory and knowledge in the“Phaedrus.”Socrates argued that writing would lead to a decline in the mind’s ability to memorize and recall information because people would rely on external written sources instead of internal memory.This reliance on written texts would weaken the mind’s capacity to learn and remember,as individuals would no longer need to exercise their memory to recall information.The truth is,he was right.In a print rich world,modern humanity has lost some of the ability to memorize large chunks of information.As we think about AI,we need to be cognizant of the potential for cognitive atrophy.I love the question and answer nature of a chatbot but I worry about the lack of productive struggle it might cause.I worry about instant answers and the loss of things like boredom and confusion that are so necessary for the learning process.I love how AI can help with ideation but I never want it to be my default in brainstorming.I can see value in using AI throughout the creative process(especially within project-based learning)but I worry about outsourcing creative work to a machine.When that happens,students don’t become the makers and problem-solvers that can be.In other words,I worry that we might become so dependent on AI that we lose the ability to engage in certain types of thinking.Just Because AI Can Do It,Doesn’t Mean We Shouldn’tI have seen many AI experts suggest that we ask the question,“Can AI do this process?”If the answer is“yes,”then it’s time to transform the learning and focus solely on the areas that humans do better.While I get the sentiment here and the need for transformation,I’d like to push back on that.

Others are asking
grok3 ai什么时候可用
Grok 3 已于今天向所有 Premium+ 订阅者推出(包括 IOS 和网页版),完整版在网页版,APP 上的 Grok 3 有一定削弱。(还有单独会员叫:SuperGrok)今天所有该类用户都能用上。Grok 3 语音模式在大约一周内推出,Grok 3 API 几周后推出,Grok 2 将在 Grok 3 正式可用后开源,xAI 计划也会开源 Grok 3 。
2025-02-19
AI编程工具
以下是一些常见的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更高效、更少错误地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,具备行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 的强大代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 此外,关于 AI 辅助编程还有以下信息: 1. 简易需求无需软件开发,像翻译、数据提取等简单任务,通过 ChatGPT 或 Claude 等 AI 工具即可解决。AI 功能不断升级,支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。相关影响包括降低编程门槛,显著提升开发效率,变革软件工程领域。 2. 用好 AI 编程工具(如 Cursor)的关键技能包括准确描述需求、具备架构能力、专业编程能力以及调试能力。 希望这些信息对您有所帮助!
2025-02-19
对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么
对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战: 风险: 1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。 2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。 挑战: 1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。 2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
2025-02-19
目前ai可以给电商做什么?
目前 AI 在电商领域有以下应用: 1. 产品照片生成:像 Flair、Booth 和 Bloom 等工具帮助品牌创建引人注目的产品照片,例如将静态的连衣裙照片变成女人穿着裙子在花园里行走的形象,未来还可能极度个性化,展示商品在用户特定场景中的效果。 2. 内容创作:AdCreative 和 Pencil 可以制作用于电子邮件或社交媒体的营销材料,Frase 或 Writesonic 可以编写经过 SEO 优化的产品描述。未来用户有望仅通过描述期望的审美并点击按钮,就能创建完整的电商商店及市场营销材料。 3. 产品推荐:AI 可以分析客户数据,向每个客户推荐他们可能感兴趣的产品。 4. 搜索和个性化:改善搜索结果,为每个客户提供个性化的购物体验。 5. 动态定价:根据市场需求动态调整产品价格。 6. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 此外,AI 还在其他领域有广泛应用,如医疗保健(医学影像分析、药物研发、个性化医疗、机器人辅助手术等)、金融服务(风控和反欺诈、信用评估、投资分析、客户服务等)、制造业(预测性维护、质量控制、供应链管理、机器人自动化等)、交通运输等。同时,AI 具有多种能力,包括生成文本、理解和处理图像与视频、进行推理和作答、生成图像等,其图像生成应用广泛,可帮助进行各种设计,电商平台上已有很多商品图片是 AI 生成的。
2025-02-19
最近一个月有哪些产品更新了ai能力
以下是近一个月 AI 能力更新的相关产品情况: 1. 在 AI 视频应用场景方面: 服务头部创作者方面,未来产品会增强编辑器能力,智能化后期制作任务。 影视后期方向,可将动捕演员表演转化为虚拟角色提高特效制作效率。 专业领域,创作者能通过草图分镜快速验证效果,如动画制作产品 Fable 于今年 4 月试水 Prism Beta 功能。 C 端大众消费侧,AI 视频在小说、网文阅读、短情景剧等内容消费方向有潜力,人物识别和替换可衍生电商平台虚拟试衣间能力。 Viggle、DomoAI 的产品中的模板套用能力若以更低成本开放在短视频产品中,可能带来新的爆发周期。 2. Luma AI 产品: Dream Machine 目前支持 txt2vid 文生视频和 img2vid 图生视频两种能力,8 月底发布的 Dream Machine 1.5 增强了提示词理解能力和视频生成能力,对视频内文字的表现很强。 在 img2vid 图生视频方面,生成效果在多方面远超其他产品,如生成时长较长、运动幅度大、能产生相机多角度位移、提示词中可增加无人机控制的视角变化、运动过程中一致性保持较好、分辨率高且改善了运动幅度大带来的模糊感。 3. 头部产品能力测评: 9 月初针对 Runway(Gen3)、Luma AI(Dream Machine1.5)、可灵 1.0 进行了 txt2vid 和 img2vid 不同场景的测试。 9 月末可灵 1.5 与 Luma、Runway Gen3 的差距在缩小。
2025-02-19
考研相关的AI工具
以下是一些与考研相关的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,可通过 AI 自动生成思维导图,支持多种模式。 2. ProcessOn:国内思维导图与 AIGC 结合,能利用 AI 生成。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路,生成文章大纲。 5. TreeMind:输入需求由 AI 自动生成思维导图。 6. EdrawMind:提供 AI 头脑风暴功能,提升生产力。 以下是一些 AI 博主素材相关的工具: 1. AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity。 2. 图片处理:DallE、Leonardo、BlueWillow、Midjourney。 3. 版权写作:Rytr、Copy AI、Wordtune、Writesonic。 4. 设计:Canva、Clipdrop、Designify、Microsoft Designer。 5. 网站搭建:10Web、Framer、Hostinger、Landingsite。 6. 视频处理:Klap、Opus、Invideo、Heygen。 7. 音频处理:Murf、LovoAI、Resemble、Eleven Labs。 8. SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope。 9. Logo 设计:Looka、LogoAI、Brandmark、Logomaster。 10. 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple。 11. 自动化工具:Make、Zapier、Bardeen、Postman。 12. 市场营销。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-19
0基础中老年学习者必须知道的AI基本概念和知识 是哪几个
对于 0 基础的中老年学习者,以下是必须知道的 AI 基本概念和知识: 一、Python 基础 1. 基本语法:包括变量命名、缩进等规则。 2. 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 3. 控制流:条件语句(if)、循环语句(for 和 while)控制程序执行流程。 4. 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 5. 模块和包:导入模块,使用包来扩展程序功能。 6. 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用。 二、AI 背景知识 1. 基础理论:了解人工智能、机器学习、深度学习的定义及相互关系。 2. 历史发展:回顾 AI 的发展历程和重要里程碑。 三、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 四、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解其基本概念。 五、评估和调优 1. 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。 2. 模型调优:学习使用网格搜索等技术优化模型参数。 六、文件操作 1. 文件读写:学习打开文件、读取文件内容和写入文件。 2. 文件与路径操作:理解如何处理文件路径,列举目录下的文件。 七、异常处理 1. 理解异常:了解什么是异常以及在 Python 中的工作方式。 2. 异常处理:学会使用 try 和 except 语句处理程序错误。
2024-09-13
rag的召回策略
RAG(检索增强生成)的召回策略主要包括以下方面: 1. 检索是 RAG 框架的核心组件之一,其质量和效率对系统性能至关重要。 检索策略:需确定何时进行检索及如何选择要检索的信息,可根据任务和上下文调整。 检索粒度:能以不同粒度进行,选择取决于任务要求和数据结构。 检索方法:包括基于关键字、实体检索、自然语言查询和知识图检索等,各有适用情境和优势。 检索效率:在实时应用中,优化检索过程以降低延迟和资源消耗是重要任务。 外部数据源:可从多种外部数据源检索,选择合适的数据源对获取准确丰富信息很关键。 2. 随着 RAG 的发展,出现了自适应的检索(也称作主动检索),其与 LLM Agent 核心思想相似。 RAG 系统可主动判断检索时机和结束流程,输出最终结果。 根据判断依据,可分为 Promptbase 和 Tuningbase 两种方式。 Promptbase 方式通过 Prompt Engineering 让 LLM 控制流程,如 FLARE 案例。 Tuningbase 方式对 LLM 微调使其生成特殊 token 来触发检索或生成,如 SelfRAG 案例。 3. 在 RAG 系统开发中,为解决文档整合限制等问题,可采取以下措施: 调整检索策略:LlamaIndex 提供多种从基础到高级的检索策略,如基础检索、高级检索与搜索、自动检索、知识图谱检索、组合/层级检索等,以适应不同需求和场景,提高检索精确度和有效性。 微调嵌入技术:对开源嵌入模型进行微调是提高检索准确度的有效手段,LlamaIndex 提供了详细的微调指南和示例代码片段。
2025-01-23
人工智能伦理策略
以下是关于人工智能伦理策略的相关内容: 英国国防部:2022 年 6 月发布了自身的 AI 伦理原则和政策,确定了英国政府在人工智能赋能军事能力方面的方法。将通过特定情境的方法确保该政策应用的适当一致性和协调性,从而促进英国在国防领域使用人工智能方面的领导地位。在引入任何法定责任之前,会考虑是否需要豁免以允许现有监管机构(如在国家安全等领域工作的机构)继续其领域级别的方法。 欧盟:欧洲议会和欧盟理事会规定了人工智能的统一规则,并修正了一系列条例。人工智能是一个快速发展的技术族,能带来广泛的经济、环境和社会效益,如改进预测、优化运营等,但也可能根据具体应用、使用情况和技术发展水平产生风险,对受欧盟法律保护的公共利益和基本权利造成损害。鉴于其可能的重大影响和建立信任的必要性,人工智能及其监管框架的发展必须符合欧盟价值观、基本权利和自由,应以人为本,最终目的是提高人类福祉。为确保在健康、安全和基本权利方面对公众利益提供一致和高水平的保护,应为所有高风险人工智能系统制定统一规则,这些规则应与《宪章》一致,非歧视性,并符合欧盟国际贸易承诺,还应考虑相关宣言、原则和准则。 AI 应用专家的实战经验: 企业管理者:在小规模决策中使用 AI 分析工具作为决策参考,制定 AI 工具使用的培训计划,识别可能受益于 AI 自动化的重复性任务并测试解决方案效果,制定公司的 AI 使用政策确保符合伦理标准和法律要求。 教育工作者:尝试使用 AI 辅助教案设计、为学生制定个性化学习计划、将 AI 工具整合到课堂活动中、开发教导学生了解 AI 的课程模块。 无论属于哪个群体,与 AI 协作是学习过程,应从小处着手,保持好奇心和开放态度,保持批判性思维,将 AI 视为工具而非完全依赖的解决方案。
2025-01-11
想利用AI穿搭,针对微胖女生设计各种穿搭,提供购买链接,实现兼职盈利。有没有针对上述问题的细致策略和操作步骤。可操作性强,易学。
目前没有关于利用 AI 穿搭针对微胖女生设计并提供购买链接以实现兼职盈利的详细策略和操作步骤的相关内容。但一般来说,您可以按照以下思路进行尝试: 首先,您需要确定目标受众,即微胖女生的具体身材特点和穿搭需求。可以通过市场调研、社交媒体互动等方式收集相关信息。 其次,选择适合的 AI 穿搭工具或软件。了解其功能和特点,学习如何有效地输入相关参数,如身高、体重、体型、个人风格偏好等,以获取准确的穿搭建议。 然后,根据生成的穿搭建议,寻找可靠的购买渠道和商品。这可能需要您与一些电商平台建立合作关系,获取商品的推广链接。 在推广方面,可以利用社交媒体平台、时尚论坛等渠道展示您的穿搭设计和购买链接。通过优质的内容吸引潜在客户,并建立良好的口碑。 同时,不断优化您的服务,根据用户的反馈和市场的变化调整穿搭方案和推广策略。 需要注意的是,实现兼职盈利需要一定的时间和努力,并且要确保所推荐的商品质量可靠,穿搭建议具有实用性和时尚感。
2024-09-13
如何成为一个AIGC算法策略产品
成为一名优秀的AIGC算法策略产品经理,需要具备以下关键能力和经验: 1. 扎实的技术基础: 深入理解人工智能 的原理和技术,熟悉各种AIGC算法和模型,能够评估和选择合适的AIGC技术方案。 2. 产品思维和战略能力: 能够将AIGC技术与产品需求相结合,制定有效的AIGC产品策略和发展规划,并带领团队实现产品目标。 3. 市场洞察力和用户分析能力: 能够深入了解市场趋势和用户需求,识别AIGC技术的市场机会和应用场景,为产品开发提供方向指引。 4. 数据分析和商业分析能力: 能够收集和分析AIGC产品相关数据,评估产品性能和市场表现,并基于数据洞察做出产品优化决策。 5. 沟通能力和团队合作能力: 能够有效地与工程师、设计师、市场人员等团队成员沟通协作,推动产品开发和落地。 6. 领导力和影响力: 能够带领团队克服挑战,实现产品目标,并在公司内部和外部树立良好的影响力。 为了成为一名优秀的AIGC算法策略产品经理,您可以采取以下步骤: 1. 夯实技术基础: 通过学习计算机科学、人工智能、机器学习等相关课程,掌握AIGC技术所需的理论知识和实践技能。 2. 积累产品经验: 参与AIGC相关产品的开发或运营工作,积累产品设计、开发、运营等方面的实战经验。 3. 提升市场洞察力: 关注AIGC技术发展趋势和市场动态,分析用户需求和市场机会,不断提升市场洞察力和用户分析能力。 4. 强化数据分析能力: 学习数据分析工具和方法,掌握数据收集、分析和可视化等技能,能够从数据中提取洞察并指导产品决策。 5. 提升沟通能力和团队合作能力: 积极参与团队合作项目,练习沟通技巧,提升团队合作能力和领导力。 6. 拓展人脉和行业影响力: 积极参加行业会议和交流活动,结识业内人士,拓展人脉,提升行业影响力。 成为一名优秀的AIGC算法策略产品经理需要不断学习和积累,这是一个充满挑战和机遇的职业道路。相信您通过努力和坚持,一定能够实现目标。
2024-05-08
学习路径
以下是不同方向的学习路径: LLM 开发学习路径: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法,掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署:包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习:结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 AI 与宠物结合的学习路径: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 AI 技术研究方向学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 AI 应用方向学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-19
我是一个小白,我想要一个deepseek学习路线
以下是为您提供的 DeepSeek 学习路线: 1. 首先,通过相关报道和研究,了解 DeepSeek 在全球 AI 社区的意义,包括技术突破与资源分配策略。重点关注其长上下文能力、量化商业模式以及对 AI 生态系统的深远影响。您可以参考: 2. 深入研究 DeepSeek 在架构和工程上的创新,例如 MoE、MLA、MTP 和 FP8 混合精度训练。思考其在工程和应用平衡中的高效优化方式,以及开源与闭源竞争的相关反思和 AI 生态未来发展方向。相关内容: 3. 了解 DeepSeek R1 模型,它属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考来提升回答质量。理解这种模拟人类深度思考的能力以及其背后独特的“教育方式”。 4. 学习 DeepSeek 深夜发布的大一统模型 JanusPro,它将图像理解和生成统一在一个模型中。了解其具有的两种本领,包括理解模式和画画模式,以及其核心的 DeepSeek 语言模型、特别训练法、与 Diffusion 模型的区别、好处和关键设计等方面。
2025-02-19
入门学习
新手入门学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果是入门强化学习: 1. 如果没有概率论和线性代数基础,且差不多都忘完了,可以去看一下相关课程学习一下,大约周末一天时间能搞定;如果不关注公式,这一步可先忽略。 2. 对机器学习没有基础的话,可以先看吴恩达的课程,有大致理解后,再看李宏毅的课程作为补充。如果单纯想入门学习强化学习,只需要看李宏毅课程前几节讲完神经网络那里就差不多了,这个视频课程估计要看 25 小时左右。 3. 学完之后可以跟着《动手学深度学习 https://hrl.boyuai.com/》一起动手学习学到的概念,写写代码,入门的话看前五章就好,本篇文章的很多资料也整理自这本书,大约 10 小时左右。 4. 接下来可以看看 B 站王树森的深度学习的课程,先看前几节学习强化学习的基础知识点,大约 5 小时左右。 5. 到这个阶段可能还是懵的,需要上手做点项目,可以看《动手学强化学习》这本书,已开源 https://hrl.boyuai.com/,只看到 DQN 的部分,大约十几小时。
2025-02-19
如何系统的学习AI
以下是系统学习 AI 的方法: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI 的性质让我们可以做一些我们无法对人做的事情,即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。
2025-02-19
ai初学者可以学习哪些课程
对于 AI 初学者,以下是一些可以学习的课程: 1. 特定的机器学习云框架: 例如。 相关课程如《》。 2. 对话式人工智能和聊天机器人: 单独课程《了解更多详情。 3. 深度学习背后的深层数学(Deep Mathematics): 推荐 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/ 上获取。 4. 人工智能的商业应用案例: 如《》(和欧洲工商管理学院 INSEAD 共同开发)。 5. 经典机器学习: 可参考《》。 6. 使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用: 如《》等。 此外,还可以: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定模块,如图像、音乐、视频等。 掌握提示词技巧。 4. 实践和尝试: 实践巩固知识,尝试使用各种产品创作作品。 在知识库分享实践成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-02-19
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19