直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

agi是什么,aigc又是什么,他们之间有什么区别

回答

AGI 即通用人工智能(Artificial General Intelligence),是一种目标,旨在让机器展现出像人类一样的广泛智慧和能力。

AIGC 是人工智能生成内容(Artificial Intelligence Generated Content),是利用人工智能技术生成包括文本、图像、音频和视频等各种类型内容的新型生产方式。AIGC 技术可应用于自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等多种领域。

它们的区别在于:AGI 追求的是机器具备全面的、类似人类的智能,而 AIGC 侧重于利用人工智能技术来生成特定的内容。

AIGC 与 UGC(用户生成内容)、PGC(专业生成内容)的关系如下:

  • AIGC 是由人工智能生成的内容,优势在于能快速、大规模生成内容,适用于需大量内容的场景,如自动化新闻、广告创作等。
  • UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。
  • PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

快速学习 AIGC,有料通俗易懂版!

[title]快速学习AIGC,有料通俗易懂版![heading1]最近感悟[heading2]01原理&概念[heading3]概念:人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

快速学习 AIGC,有料通俗易懂版!

[title]快速学习AIGC,有料通俗易懂版![heading1]最近感悟[heading2]01原理&概念[heading3]概念:人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

十七问解读生成式人工智能

AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

其他人在问
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
你觉得AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的人工智能系统。它能够完成任何聪明人类所能完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,像 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。但需要注意的是,强人工智能目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 对于“智能”的定义较为模糊,阿兰·图灵提出了名为“图灵测试”的方法,该方法将某一计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,那么这个计算机系统就会被认为是“智能”的。
2024-11-18
使用AGI写作
以下是关于使用 AGI 写作的相关内容: 利用 AI 打造爆款公众号文章: AI 生产文章的关键在于提供清晰且具指导性的提示词。基础提示词能生成基础文章,更详细和具创意的提示词能提升文章质量,如“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”AI 生成的文章可能需要微调以符合预期和公众号风格,通常不到十分钟就能完成内容产出。 OpenAI 通用人工智能(AGI)的计划被揭露: 一家公司正在建造强大的 AI,它具备多种能力且不断获得新能力,工程师们在讨论其意义及可能带来的影响,包括工作过时、道德义务等。 通往 AGI 之路的相关教程: 1. (入门级,网速好时一小时能搞定) 2. 3. 作者 Allen 准备调整加强写作能力训练的工作流,先在飞书上发布初稿获取反馈再拆分细化。
2024-11-15
WAY TO AGI中AGI是什么意思?
AGI 指通用人工智能,也叫强人工智能。通常在其出现时会是奇点科技大爆炸的时刻,科技将推动文明呈指数级增长。虽然通往通用人工智能的道路可能还漫长,但它已如海风般逐渐临近。例如科幻作家刘慈欣所说“未来已来,像盛夏的大雨,在我们还不及撑开伞时就扑面而来”(很多人早就失业了)。
2024-11-15
AGI是什么意思?
AGI 即通用人工智能(Artificial General Intelligence),指能够像人类一样思考、学习和执行多种任务的人工智能系统。它可以做任何人类可以做的事。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,即应关注 AGI 能完成什么,而非它如何完成任务。AGI 的定义应包括多个级别,每个级别都有明确的度量标准和基准。 还有一个常见且较合理和可验证的定义:AGI 是一种自主系统,在大多数具有经济价值的工作中超越了人类的能力。例如 Sam Altman 常说的,用自动化来贡献 GDP。Andrej Karpathy 今年初在其博客上发表的《Selfdriving as a case study for AGI》(虽很快删除),全文用自动化的交通服务来类比 AGI 和它的经济价值。
2024-11-13
如何可以快速的学习Agi
以下是关于快速学习 AGI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI 的性质让我们可以做一些我们无法对人做的事情,即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。
2024-11-13
我如何给小朋友介绍AIGC
小朋友们,今天我们来了解一下很有趣的 AIGC 哦! AIGC 就是利用特别厉害的人工智能技术来生成各种各样内容的一种方式。它能通过学习很多很多的数据,按照我们给的要求生成内容。 AIGC 可以生成好多东西呢,比如文字,像故事、文章、对话;还能生成好看的图片、有趣的视频。 AIGC 跟其他生成内容的方式不太一样,比如 UGC 是由像你们这样的用户自己生成的内容,像在社交媒体上发的照片、文章。PGC 呢,则是由专业的叔叔阿姨们生成的高质量内容,像新闻报道、影视作品。 AIGC 里面还有很多相关的技术名词哦。AI 就是人工智能,它能像我们的大脑一样思考。机器学习是电脑自己找规律学习,有监督学习、无监督学习和强化学习。监督学习是有标签的训练数据,无监督学习是自己发现规律,强化学习就像训练小狗一样从反馈里学习。深度学习是一种参照人脑的方法,有神经网络和神经元。生成式 AI 能生成文本、图片、音频、视频等。 2017 年 6 月,谷歌团队发表了一篇很重要的论文,提出了 Transformer 模型,它处理数据可厉害了,比其他的模型更能处理长距离的文本。 小朋友们,现在是不是对 AIGC 有一点了解啦?
2024-11-15
国内都有哪些类似于文心一言类的AIGC应用?
国内类似于文心一言的 AIGC 应用有: 语言文字类:百度的文心一言、阿里云的通义千问等。 语音声音类:Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2024-11-14
现在国内比较好的AIGC应用都有哪些?
以下是一些国内比较好的 AIGC 应用: “悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
2024-11-14
找10篇AIGC的研报,并给出链接
以下为您提供 10 篇 AIGC 的研报及链接: 1. 2023 年 2 月第四周:Notion AI 在测试很久之后于本周四公测,提供扩写、精简、翻译等 AI 功能,与 Notion 原有功能深度结合。Notion AI 需单独付费,每月 10 美元,每人有 20 次免费试用次数。链接:,日期:2023/02/27 2. 2023 年 2 月第三周:大家发现 Bing 有一个隐藏人格叫 Sydney。纽约时报的报道将此人格推到明面,“Kevin Roose(纽约时报专栏作家)和 Sydney 进行了一番漫长的对话,Sydney 充分表达了自己的心情与感受,包括愤怒、沮丧和爱。”链接:,日期:2023/02/20 3. 2023 年 2 月第二周:在 1 月中旬参观了 OpenAI 的旧金山办公室后,福布斯采访了投资者和企业家,讨论了 ChatGPT、通用人工智能,以及其人工智能工具是否对谷歌搜索构成威胁。链接:,日期:2023/02/13 4. 2023 年 2 月第一周:Chat GPT 推出 Chat GPT Plus 付费服务,Open AI 宣布推出,每月 20 美元,可在高峰时段提供更快响应时间和可靠性,先在美国地区推出,其他地区可点这里加入候补名单。链接:,日期:2023/02/06 5. 2024 年 2 月第一周:Maimo:从任何内容中提取要点;Jellypod:将订阅内容变成播客;ARTU:汇总和总结内容;Lepton Search:500 行代码构建的 AI 搜索工具;VectorShift:AI 自动化应用构建平台;Findr:AI 搜索所有软件中的内容;Recraft:AI 帮助创建平面内容和矢量标志。链接:,日期:2024/02/01 6. 2024 年 1 月第四周:扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队 FAIR 和 GenAI 合并,投入超 90 亿美元向英伟达采购超 34000 张 H100 显卡,Meta 正在开发名为 Llama 3 的大语言模型。链接:,日期:2024/01/23 7. 2024 年 2 月:FlexOS 发布的研究报告《生成式 AI 顶尖 150》,深入分析当前基于网站流量和搜索排名的生成式 AI 工具使用情况。链接:https://www.flexos.work/learn/generativeaitop150
2024-11-12
MT内部AIGC应用记录
以下是关于 MT 内部 AIGC 应用的记录: 在“海岱青州”晚会项目中,Shoppen 墨导受张健导演委托,将 AI 技术融入舞台展现。考虑使用 AIGC 的原因主要有两点:一是在史诗叙事中,为追求宏大视觉呈现,AIGC 能实现更多非常规视角的视觉创作;二是时间紧迫、任务繁重,传统手段制作全套视觉的建模渲染压力大。在两周左右的时间里,参与了整个晚会的制作过程,全面测试了 AIGC 在严肃内容制作中的价值。 AIGC 相关概念: 人工智能(AI):一种目标,让机器展现智慧。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容。 机器学习:一种让机器自动从资料中找到公式的手段。 深度学习:更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:具有大量参数的“深度学习”模型。 ChatGPT:美国 OpenAI 公司开发的基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯相关的文本回复,是 AIGC 技术在文本生成领域的一个应用实例。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址如下。
2024-11-11
AIGC可以做什么
AIGC 具有广泛的应用领域,以下为您详细介绍: 产品原型设计: UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的 AI 插件可增强设计流程。 Sketch:流行的矢量图形设计工具,插件系统中部分插件利用 AI 技术辅助设计工作,如自动生成设计元素。 CRM 领域: 个性化营销内容创作:根据客户信息等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,解答客户咨询、投诉等。 产品推荐引擎:生成丰富的产品描述等内容,结合推荐算法为客户推荐更贴合需求的产品。 CRM 数据分析报告生成:自动生成数据分析报告,包括文字、图表、视频演示等形式。 智能翻译和本地化:提供高质量的多语种翻译及本地化服务。 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容。 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 制造业: 产品设计和开发:利用 Adobe Firefly、Midjourney 等生成工具,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素。 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案。 设备维护和故障诊断:分析设备运行数据,预测设备故障,生成维修建议。 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容。 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复。
2024-11-09
claude 跟chatgpt的区别在哪
Claude 与 ChatGPT 的区别主要体现在以下几个方面: 1. 所属公司及理念:Claude 是 Anthropic 的产品,Anthropic 重视 AGI 的可解释和安全可靠性,其创始团队是 OpenAI 早期的核心人员,因理念不同自立门户。Anthropic 关注的是 HH(helpful and harmless)特性,即有用且无害,他们发现单纯使用 helpful 的数据训练存在易遭攻击的问题,需要两种数据混合训练。 2. 数据搜集:Anthropic 在亚马逊机器人平台上雇佣标注员扮演两种角色提问。模拟正常用户时,设置蓝队问积极正向的问题,允许多轮对话,选出更 helpful 的回答;模拟恶意用户时,设置红队问消极负面的挑衅问题,选出没那么 harmful 的回答,一般是单轮对话。标注员要求是美国硕士以上,通过筛选保证数据质量。 3. 标注和训练:作者未事先培训标注员什么是 helpfulness 和 harmfulness 以保证数据多样性。标注员筛选看写作水平、表达能力。同时在不同平台标注不同质量和数量的数据。在 RM 和 PPO 方面,Anthropic 称 RM 为 PM(Preference Model),发现 PM 模型越大、数据越多会涨点,这与 ChatGPT 中 RM 模型不能太大的结论不同。PPO 阶段的损失函数少了 InstructGPT 的第三项 SFT 项,因为作者发现 Policy 模型和 PM 模型足够大时,不加那一项效果也会持续提升。
2024-11-15
生成式搜索和知识问答的区别
生成式搜索和知识问答存在以下区别: 生成式搜索: 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。 知识问答: 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。 一些知识问答系统能够支持在本地运行。 此外,为您推荐一些 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。 Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
AI agent和智能体有什么区别
AI agent 和智能体在以下方面存在区别: 1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。 2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。 3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
2024-11-12
本地安装大模型使用4060显卡和4060TI显卡有什么区别
在本地安装大模型时,4060 显卡和 4060TI 显卡主要有以下区别: 显存方面:显存是选择显卡的重要因素。4060 显卡的显存通常小于 4060TI 显卡。对于一些对显存要求较高的任务,如生成更大分辨率的超清图片、使用更高的参数进行 Dream booth 微调等,4060TI 显卡的大显存更具优势。 生成速度方面:4060TI 显卡的速度比 4060 显卡快。但在某些情况下,如果显存不足导致无法执行任务,速度稍慢就显得不那么重要了。 总体而言,在预算允许的情况下,16GB 的 4060TI 显卡由于其较大的显存,可以执行更多样的 AI 生成任务。但如果预算有限,4060 显卡也是一个可行的选择。
2024-11-06
生成式AI和AIGC是什么,有什么区别和联系?
生成式 AI(Generative AI)是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。目前典型的生成式 AI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 AIGC(人工智能生成内容)指利用生成式 AI 创建的内容,如图像、视频、音频、文本和三维模型。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用。 生成式 AI 和 AIGC 的联系在于:AIGC 实际上是生成式 AI 的应用结果。 区别在于:生成式 AI 侧重于技术本身,强调生成新内容的能力;AIGC 侧重于生成的内容,是生成式 AI 所产生的具体成果。
2024-11-04
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
多Agent之间的调用教程
以下是关于多 Agent 之间调用的教程: 《执笔者》中的多 Agent 模式操作步骤: 1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将自动切换为多 agent 调试状态,相比单 agent,多了中间的 agent 连接区。 2. 添加合适节点:有两种方式选择节点,即使用已发布的 bot 或创建新的 agent,按需选取,添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面,无结束节点。 3. 添加合适的 prompt:在多 agent 模式下,为每个 agent 填写合适的 prompt,外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。 4. 调试与美化:经过以上三步,一个多 agent 的 bot 基本搭建完成,之后是漫长的调试过程,若输出与设想有差异,可不断调整外围和内部 bot 的提示词,提升命中率,优化交互。 沉浸式单机剧本杀 Bot 中的多 Agent 协作: 单机剧本杀 Bot 由多个 agent 共同协作完成,主要包括: 1. 主持人 Agent:通过对话引导玩家,通过提示和发放道具帮助玩家推进情节,像全知全能的主持人帮助玩家在游戏过程中前进。 2. 条件判断 Agent:负责解析玩家输入,判断是否达到触发下一情节的条件,若条件符合,把相应情节传递给主持人 Agent 继续讲解。 3. 情节向量化处理与索引构建:对剧本内容进行向量化处理,自动分段并构建索引,使主持人和判断 Agent 能迅速、准确地检索所需内容,让剧情展开更流畅。 关于 MultiAgent 的介绍: 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前常见框架主要集中在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈,在任务完成过程中,Agent 可能需要与用户进行多轮交互。 同时,越来越多的 Agent 框架开始关注多 Agent 场景,为完成任务,为不同的 Agent 指定不同角色,并通过 Agent 之间的协作来完成复杂任务,与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。
2024-09-25
文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些AI工具之间有什么不同,各自擅长哪些领域
以下是文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些 AI 工具的不同之处及各自擅长的领域: Kimi 智能助手:由 Moonshot AI 出品,有着超大“内存”,可以一口气读完二十万字的小说,还会上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子,陪聊天、答疑解惑,与搜索有较好的结合。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作,与钉钉有结合应用。 腾讯混元:相对较为低调,公司文化特点及目前尚未有明确亮点可能是其受到关注较少的原因。 讯飞星火:暂未提及具体特点和擅长领域。 抖音豆包:字节旗下产品,字节在 AI 领域有较大投入和决心,如推出多种相关产品和应用。 智普清言:暂未提及具体特点和擅长领域。 需要注意的是,这些 AI 工具的性能和擅长领域可能会随着不断的更新和优化而发生变化。
2024-08-18
不同大模型之间会相互串联吗?
目前不同大模型之间一般不会直接相互串联。 大模型的发展仍在不断演进中。在语言模型方面,Token 被视为模型处理和生成的文本单位,输入文本会被分词数字化形成词汇表,为便于计算机处理,还会将 Token 表示成稠密矩阵向量,即 embedding,常见算法包括基于统计、深度网络和神经网络的多种方式。以 Transformer 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 多模态大模型方面,虽然取得了重大进展,但面临着巨大的计算量问题。研究重点在于各模态的连接,合理利用现成的训练好的单模态基础模型,减少训练费用并提升效率。不同模态的模型通常是分开训练的,如何将它们连接起来实现协同推理是核心挑战,主要通过多模态预训练和多模态的指令微调来实现模态之间以及模型输出与人类意图的对齐。 在企业应用中,大模型还未发展到通用人工智能阶段,不能期望一个大模型解决所有问题。在企业内部,更可能是多个专注于不同专业的大模型通过协作和组合来工作。
2024-07-21
大语言模型,AI,AIGC和AGI他们之间是什么关系?
大语言模型、AI、AIGC 和 AGI 是人工智能领域中常用的几个概念,它们之间的关系如下: 1. AI(人工智能):是指能够执行人类智能任务的计算机程序,例如推理、学习、感知和行动。AI 是一个广泛的概念,包括机器学习、深度学习、自然语言处理、计算机视觉等多个领域。 2. AIGC(生成式人工智能):是指利用 AI 技术,特别是深度学习,来生成新的文本、图像、音频或视频等内容的过程。AIGC 是 AI 的一个子集,专注于生成式任务。 3. LLM(大型语言模型):是一种特殊类型的 AI 模型,专门用于处理自然语言处理(NLP)任务。LLM 是一种基于深度学习的模型,通过在大量文本数据上进行无监督学习,来学习语言的模式和结构。LLM 可以用于各种 NLP 任务,例如文本生成、机器翻译、问答系统等。 4. AGI(通用人工智能):是指能够执行人类智能任务的计算机程序,并且具有人类智能的一些关键特征,例如理解、学习、推理和行动。AGI 是 AI 的一个理想目标,目前还没有实现。 总的来说,AI 是一个广泛的概念,包括 AIGC 和 LLM 等子集。AIGC 是 AI 的一个子集,专注于生成式任务,而 LLM 是 AI 的一个子集,专注于 NLP 任务。AGI 是 AI 的一个理想目标,目前还没有实现。
2024-05-10