以下是关于多 Agent 之间调用的教程:
《执笔者》中的多 Agent 模式操作步骤:
沉浸式单机剧本杀 Bot 中的多 Agent 协作: 单机剧本杀 Bot 由多个 agent 共同协作完成,主要包括:
关于 Multi-Agent 的介绍: 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前常见框架主要集中在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈,在任务完成过程中,Agent 可能需要与用户进行多轮交互。 同时,越来越多的 Agent 框架开始关注多 Agent 场景,为完成任务,为不同的 Agent 指定不同角色,并通过 Agent 之间的协作来完成复杂任务,与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。
1.多agent模式切换在bot编排页面点选多agent模式,页面将会自动切换为多agent调式状态,相比单agent,主要是多了中间一块的agent连接区。切换多agent后的默认页面1.添加合适节点节点这里有两种方式可以选择,用已发布的bot,或者创建一个新的agent,大家按需选取。添加的agent直接连接在默认的总管agent(“执笔者”)后面即可,无结束节点。1.添加合适的prompt在多agent模式下,我们需要为每个agent填写合适的prompt。外围的人设填写该bot的主要功能,内部的bot填写各个bot/agent的应用场景。1.调试与美化经过以上简单三步,一个多agent的bot就基本搭建完成,接下来就是漫长的调试过程,如果输出与自己设想有差异,可以不断调整外围和内部bot的提示词,提升命中率,优化交互。
我们的单机剧本杀Bot由多个agent共同协作完成,其中主要包括:1.主持人Agent:这个Agent主要通过对话引导玩家,通过提示和发放道具帮助玩家推进情节。它就像一个全知全能的主持人,帮助玩家在游戏过程中不断前进。2.条件判断Agent:负责解析玩家输入,判断是否达到了触发下一情节的条件。如果条件符合,它会把相应的情节传递给主持人Agent继续讲解。3.情节向量化处理与索引构建:通过对剧本内容进行向量化处理,我们将其自动分段,并构建索引。这样主持人和判断Agent可以迅速、准确地检索所需内容,使得剧情展开更加流畅。
随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。