Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多Agent之间的调用教程

Answer

以下是关于多 Agent 之间调用的教程:

《执笔者》中的多 Agent 模式操作步骤

  1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将自动切换为多 agent 调试状态,相比单 agent,多了中间的 agent 连接区。
  2. 添加合适节点:有两种方式选择节点,即使用已发布的 bot 或创建新的 agent,按需选取,添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面,无结束节点。
  3. 添加合适的 prompt:在多 agent 模式下,为每个 agent 填写合适的 prompt,外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。
  4. 调试与美化:经过以上三步,一个多 agent 的 bot 基本搭建完成,之后是漫长的调试过程,若输出与设想有差异,可不断调整外围和内部 bot 的提示词,提升命中率,优化交互。

沉浸式单机剧本杀 Bot 中的多 Agent 协作: 单机剧本杀 Bot 由多个 agent 共同协作完成,主要包括:

  1. 主持人 Agent:通过对话引导玩家,通过提示和发放道具帮助玩家推进情节,像全知全能的主持人帮助玩家在游戏过程中前进。
  2. 条件判断 Agent:负责解析玩家输入,判断是否达到触发下一情节的条件,若条件符合,把相应情节传递给主持人 Agent 继续讲解。
  3. 情节向量化处理与索引构建:对剧本内容进行向量化处理,自动分段并构建索引,使主持人和判断 Agent 能迅速、准确地检索所需内容,让剧情展开更流畅。

关于 Multi-Agent 的介绍: 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前常见框架主要集中在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈,在任务完成过程中,Agent 可能需要与用户进行多轮交互。 同时,越来越多的 Agent 框架开始关注多 Agent 场景,为完成任务,为不同的 Agent 指定不同角色,并通过 Agent 之间的协作来完成复杂任务,与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。

Content generated by AI large model, please carefully verify (powered by aily)

References

《执笔者》:基于多Agent模式的全能写手

1.多agent模式切换在bot编排页面点选多agent模式,页面将会自动切换为多agent调式状态,相比单agent,主要是多了中间一块的agent连接区。切换多agent后的默认页面1.添加合适节点节点这里有两种方式可以选择,用已发布的bot,或者创建一个新的agent,大家按需选取。添加的agent直接连接在默认的总管agent(“执笔者”)后面即可,无结束节点。1.添加合适的prompt在多agent模式下,我们需要为每个agent填写合适的prompt。外围的人设填写该bot的主要功能,内部的bot填写各个bot/agent的应用场景。1.调试与美化经过以上简单三步,一个多agent的bot就基本搭建完成,接下来就是漫长的调试过程,如果输出与自己设想有差异,可以不断调整外围和内部bot的提示词,提升命中率,优化交互。

沉浸式单机剧本杀Bot

我们的单机剧本杀Bot由多个agent共同协作完成,其中主要包括:1.主持人Agent:这个Agent主要通过对话引导玩家,通过提示和发放道具帮助玩家推进情节。它就像一个全知全能的主持人,帮助玩家在游戏过程中不断前进。2.条件判断Agent:负责解析玩家输入,判断是否达到了触发下一情节的条件。如果条件符合,它会把相应的情节传递给主持人Agent继续讲解。3.情节向量化处理与索引构建:通过对剧本内容进行向量化处理,我们将其自动分段,并构建索引。这样主持人和判断Agent可以迅速、准确地检索所需内容,使得剧情展开更加流畅。

问:Multi-Agent是什么

随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。

Others are asking
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15
AI Agent 或者 工作流, 落地的场景
以下是 AI Agent 或工作流的一些落地场景: Long horizon task 长期任务执行:Agent 能像称职的项目经理,分解大任务为小步骤,保持目标导向并适时调整策略。 多模态理解:Agent 能同时理解文字、图像、声音等多种交流方式,全方位感知世界和任务上下文。 记忆与行动:通过先进的记忆机制,Agent 能积累经验,记住对话、操作步骤和效果,行动更精准高效。 自适应学习:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,有两条技术路线:以自主决策为核心的 LLM 控制流和以工作流(Workflow)编排为重点的工具集成系统。Anthropic 提出的 MCP(Model Context Protocol)提供了通用接口协议,将外部资源抽象为“上下文提供者”,便于模型与外部世界交互。 工作流驱动的 Agent 搭建,简单情况分为 3 个步骤:规划,包括制定任务关键方法、总结目标与执行形式、分解子任务等;实施,在 Coze 上搭建框架并分步构建和测试功能;完善,全面评估并优化效果。 典型例子如利用 Kimi Chat 进行网页搜索和总结分析。 包括 Agent 自行规划任务执行的工作流路径,适用于简单或线性流程。 多 Agent 协作,如吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色共同开发应用或复杂程序。 OpenAI 研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent=LLM+规划+记忆+工具使用”,规划包括子目标分解、反思与改进。
2025-02-15
腾讯agent开发
AppAgent 是由腾讯开发的一种基于大型语言模型(LLM)的多模态 Agent 框架。 其主要特点和功能包括: 多模态代理:能够处理和理解多种类型的信息(如文本、图像、触控操作等)。 直观交互:通过模仿人类的直观动作(如点击和滑动屏幕)来与手机应用程序交互,能够在手机上执行各种任务,例如在社交媒体上发帖、帮用户撰写和发送邮件、使用地图、在线购物,甚至进行复杂的图像编辑等。 对于之后模仿数据的反利用也有不错的应用场景,例如互联网或 AI 或涉及到原型+UE 的工作都可以在基于模仿数据的基础上进行反推,进而让设计出的产品原型和 UE 交互更优解。 AppAgent 在 50 个任务上进行了广泛测试,涵盖了 10 种不同的应用程序。该项目由腾讯和德州大学达拉斯分校的研究团开发。 相关链接: 官方网站:https://appagentofficial.github.io 相关报道:https://x.com/xiaohuggg/status/1738083914193965528?s=20
2025-02-14
什么是Agent
Agent(智能体)是一种能够在环境中自主感知、思考并采取行动以实现特定目标的实体。它可以是软件程序,也可以是硬件设备。 从产品角度来看,比如我们的 Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可设计背景故事,明确其起源、经历和动机,定义性格特点、说话方式和风格,以及设计对话风格和角色技能。 在结合大型语言模型(LLM)的情况下,LLM Agent 能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助手段)和行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆、长期记忆)和工具使用(调用外部 API 获取额外信息)等方面。
2025-02-14
通义灵码教程
以下是关于通义灵码的教程: 1. 通义灵码安装:在 vscode 中安装通义灵码,包括在应用商店搜索、安装及相关设置。 2. vscode 界面介绍:讲解新下载 vscode 后的界面,如文件操作、左侧栏功能、搜索功能等,重点指出初级阶段需了解的三个点。 3. 通义灵码拖动:演示将通义灵码从左侧拖动至右侧的操作,此操作基于个人习惯,不拖也不影响使用。 4. 活动回顾与目标:回顾第一节课关于 AI 编程的理解、能力边界、表达需求等内容,明确本次活动目标为完成新年接福小游戏。 5. 复刻新年接福小游戏的流程与方法: 明确目标:确定制作小游戏的目的,如为课程增添趣味性。 绘制原型:将想法具象化,画出游戏页面框架,如开始页、游戏中财宝掉落和用户操作等。 准备素材:寻找合适的图片完善游戏画面,如背景图、财宝和人物形象等。 清晰表达:把需求准确表述给 AI 程序员,如创建文件夹、在特定位置编辑需求等。 利用工具:使用 AI 程序员和相关编程工具实现游戏开发。 此外,通义灵码是阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。在 Pytharm 中,通过“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。
2025-02-17
有没有lora怎么使用的教程
以下是关于 Lora 使用的教程: 1. 港风胶片 Lora 模型使用方法: 方法 1:利用上一期活动图片反推工作流,使用唯美港风图片进行反推提示词,在大模型后接一个墨悠_胶片 Lora。上一期活动链接:。胶片 Lora 链接:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 方法 2:利用抱脸的 joycaption 图片反推提示词,然后在哩布上跑 flux 文生图工作流。 joycaption 链接(需要魔法):https://huggingface.co/spaces/fancyfeast/joycaptionprealpha 文生图工作流: 在哩布上跑文生图:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 2. Comfyui SDXLLightning 中 Lora 的使用: SDXLLightning 是字节跳动推出的高速文本生成图像模型,包含完整的 UNet 和 LoRA 检查点。用户可以使用 Diffusers 和 ComfyUI 等框架进行配置。模型地址:https://huggingface.co/ByteDance/SDXLLightning/tree/main 。 实际使用时,拿 Lora 的使用来做介绍,使用方法和平常的 Lora 用法一样,但需要注意 CFG 值需要调小,一般设置为 1,另外步数设置根据使用的 Lora 步数为准。 3. Stable Diffusion 中 Lora 的使用: 当想要生成多张同一张脸的照片时,需要用到 Lora 模型。Lora 可以固定照片的特征,如人物特征、动作特征、照片风格。 点击“生成”下面的第三个按钮,弹出新的选项框,找到 Lora,就会出现下载保存到电脑的 Lora 模型。 点击要用的 Lora,会自动添加到关键词的文本框里面。Lora 可以叠加使用,但建议新手不要使用太多 Lora,每个 Lora 后面的数字用于调整权重,一般只会降低权重。 选择 Lora 时,要根据最开始想要生成的照片类型来选择,比如想生成真人模特,对应的 Lora 也要选用真人模特。
2025-02-17
帮我找一些具有文件上传功能的AI智能体或应用的搭建教程
以下是一些具有文件上传功能的 AI 智能体或应用的搭建教程: 使用 Coze 搭建: 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 实现文件上传:通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。 Coze 的 API 与工作流执行:关于 API 的使用及工作流执行流程可以参考。 设计界面:搭建 Demo 最简单的方式是首先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言包括 HTML 用于构建网页基础框架,定义整体页面结构;CSS 负责网页布局样式美化;JavaScript 实现交互逻辑,如信息处理、网络请求及动态交互功能。 Stuart 教学 coze 应用中的“上传图片”: 传递上传图片地址:首先,把工作流的入参设置为 File>Image。然后,注意代码内容,其中 ImageUpload1 部分是可以替换成实际的文件上传组件的组件名称的,一个引号,一个大括号都不能错。 获得图片 URL:接下来就比较简单了,工作流中可以直接用这个 image 变量,也可以用 string 模式输出,它会在工作流中变成图片的 URL。 无企业资质也能 coze 变现: 以 API 形式链接 Zion 和 Coze:同理也可以为 dify、kimi 等给任何大模型&Agent 制作收费前端。参考教程: 自定义配置:变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接:支付: 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 Zion 支持小程序,Web,AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。
2025-02-16
帮我查找关于文件上传的智能体搭建教程 、
以下是关于文件上传的智能体搭建教程: 1. 上传文档至知识库: 点击【上传知识】按钮,进入知识上传和配置页面。 上传文档文件或 URL 导入。 上传文档类知识:支持上传 pdf(建议)、doc/docx、ppt/pptx、xlsx、csv、txt、md 等类型的文档,当前文档默认上传大小不超过 50M。对于本地化部署的知识库,可通过配置文件调整此限制。 可以添加 URL 类知识:支持添加多个 url 链接,添加后将会至网页中抓取静态内容,当前暂不支持下钻抓取其他网页的内容;手动点击更新后将会从网页上重新爬取内容(仅包含静态网页内容,不可下钻爬取内容)。若企业自有网站会做知识的动态更新,可以手动快速同步到清流平台上。 配置知识的切片方式:切片类型选择当前系统会根据解析的知识类型自动选择,若想了解更多信息,可至【进阶功能】【文档切片调优】处查看。设置支持配置图片处理方式和自定义切片方式,了解更多信息,可至【进阶功能】【文档切片调优】、【图片解析】处查看。 知识预览:根据选择的知识类型,展示预览内容方便查看切片效果。 2. 知识处理学习:配置完成后知识将进入数据处理中状态,主要对知识进行解析、切片和向量化处理,此时耐心等待数据处理完成即可。
2025-02-16
coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent。 开源 AI Agent 的设计到落地的全过程思路。 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 此外,还有以下关于 Coze 的介绍: Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-02-16
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南中提到长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 相关比赛中的教程: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库(https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平(https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent(https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验(https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏(https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档(https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-02-16
你调用的是哪个大模型?
我调用的是抖音集团的云雀大模型。在一些项目中,还会涉及到其他大模型的调用,比如在 COW 项目中可直接调用千问的某一模型,需更改 key 和 model 等操作,且要实名认证。此外,军师联盟 BOT 工作流中会调用月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言这五个大模型。
2025-02-14
coze 能调用用户自己部署的大模型吗
Coze 可以调用用户自己部署的大模型。例如: 在 Coze 上搭建工作流框架时,可通过“个人空间工作流创建工作流”进行操作,在编辑面板中拖入对应的大模型节点来实现各项文本内容的生成。 当在 COW 中直接调用千问的某一个大模型时,需要更改 key 和 model 等配置。获取 key 可参考相关的视频和图文教程,同时需要完成实名认证,否则可能出现报错。 在使用 Coze 做智能报表助手的过程中,也涉及到对大模型的运用,如将用户问题转换为 SQL 等。
2025-02-12
我应该如何调用你的知识库并用在本地部署的deepseek上呢
要在本地部署的 DeepSeek 上调用知识库,您可以参考以下步骤: 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项包括最大召回数量、最小匹配度和调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 此外,关于 DeepSeek 的提示词相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,参考 。 如何使用: Step1:搜索 www.deepseek.com,点击“开始对话”。 Step2:将装有提示词的代码发给 Deepseek。 Step3:认真阅读开场白之后,正式开始对话。 设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定)。 DeepSeekR1 提示词系统的核心原理认知包括: AI 特性定位:多模态理解,支持文本/代码/数学公式混合输入;动态上下文,对话式连续记忆(约 4K tokens 上下文窗口);任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架方面,如果不知道如何表达,还是可以套用框架指令,包括四要素模板和格式控制语法。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧包括思维链引导和知识库调用。思维链引导中的分步标记法为请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问为在得出最终结论前,请先列举三个可能存在的认知偏差。知识库调用包括领域限定指令和文献引用模式。
2025-02-11
请提供deepSeek api的具体调用文档
以下是关于 DeepSeek 的相关信息: 网址:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 使用方法: 搜索 www.deepseek.com ,点击“开始对话”。 将装有提示词的代码发给 DeepSeek 。 认真阅读开场白之后,正式开始对话。 特点: 很方便,只需要获得游戏代码即可。 对于新手较为推荐。 相关工具:HiDeepSeek 能让 DeepSeek 的能力更上一层楼,它能让 AI 像人类交流时那样展示思考过程,不是要让 AI 变得更聪明,而是要让其思考过程更易理解。使用时可参考以下步骤: 用 Coze 做小测试进行效果对比。 设计思路包括将 Agent 封装成 Prompt 并储存在文件、通过提示词文件让 DeepSeek 实现联网和深度思考功能、优化输出质量等。 完整提示词版本为 v 1.3 。 特别鸣谢李继刚和 Thinking Claude 等为相关设计提供帮助和灵感。
2025-02-08
你能调用deepseekR1的API吗?
DeepSeekR1 的 API 调用步骤如下: 1. 首先到 DeepSeek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。 2. 早期 DeepSeek 有赠送额度,如果没有赠送的余额,可以选择去充值。支持美元和人民币两种结算方式,以及各种个性化的充值方式。 3. 创建一个 API key,注意,API key 只会出现一次,请及时保存下来。 4. 接下来,下载 Cursor(https://www.cursor.com/),或者 VSCode(https://code.visualstudio.com/),只要代码编辑器可以下载插件即可。 5. 以 Cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline。 6. 安装完后,打开三角箭头,就可以看到 RooCline,选中并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。 7. 最后做完所有不要忘记点击 Done 保存修改。 8. 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-05
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
pytorch跟cuda之间的关系
PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。 例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。
2024-12-01
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
agi是什么,aigc又是什么,他们之间有什么区别
AGI 即通用人工智能(Artificial General Intelligence),是一种目标,旨在让机器展现出像人类一样的广泛智慧和能力。 AIGC 是人工智能生成内容(Artificial Intelligence Generated Content),是利用人工智能技术生成包括文本、图像、音频和视频等各种类型内容的新型生产方式。AIGC 技术可应用于自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等多种领域。 它们的区别在于:AGI 追求的是机器具备全面的、类似人类的智能,而 AIGC 侧重于利用人工智能技术来生成特定的内容。 AIGC 与 UGC(用户生成内容)、PGC(专业生成内容)的关系如下: AIGC 是由人工智能生成的内容,优势在于能快速、大规模生成内容,适用于需大量内容的场景,如自动化新闻、广告创作等。 UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2024-10-20
文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些AI工具之间有什么不同,各自擅长哪些领域
以下是文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些 AI 工具的不同之处及各自擅长的领域: Kimi 智能助手:由 Moonshot AI 出品,有着超大“内存”,可以一口气读完二十万字的小说,还会上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子,陪聊天、答疑解惑,与搜索有较好的结合。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作,与钉钉有结合应用。 腾讯混元:相对较为低调,公司文化特点及目前尚未有明确亮点可能是其受到关注较少的原因。 讯飞星火:暂未提及具体特点和擅长领域。 抖音豆包:字节旗下产品,字节在 AI 领域有较大投入和决心,如推出多种相关产品和应用。 智普清言:暂未提及具体特点和擅长领域。 需要注意的是,这些 AI 工具的性能和擅长领域可能会随着不断的更新和优化而发生变化。
2024-08-18
不同大模型之间会相互串联吗?
目前不同大模型之间一般不会直接相互串联。 大模型的发展仍在不断演进中。在语言模型方面,Token 被视为模型处理和生成的文本单位,输入文本会被分词数字化形成词汇表,为便于计算机处理,还会将 Token 表示成稠密矩阵向量,即 embedding,常见算法包括基于统计、深度网络和神经网络的多种方式。以 Transformer 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 多模态大模型方面,虽然取得了重大进展,但面临着巨大的计算量问题。研究重点在于各模态的连接,合理利用现成的训练好的单模态基础模型,减少训练费用并提升效率。不同模态的模型通常是分开训练的,如何将它们连接起来实现协同推理是核心挑战,主要通过多模态预训练和多模态的指令微调来实现模态之间以及模型输出与人类意图的对齐。 在企业应用中,大模型还未发展到通用人工智能阶段,不能期望一个大模型解决所有问题。在企业内部,更可能是多个专注于不同专业的大模型通过协作和组合来工作。
2024-07-21