直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7

回答

射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。

其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。

常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。

在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。

RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
喂AI文档,表格不识别怎么办
如果 AI 文档中的表格不被识别,您可以参考以下内容: 召回排序过程中会过滤掉标题里携带了【已废弃】、【已过期】、【已停用】、【已删除】、【已作废】、【已过时】、【弃用】等字眼的片段。如果某些文档已经过期、内容不再准确,但是又需要保留存档,可以在文档总标题里加上关键字眼,避免这些文档进入问答、影响答案的准确性。 当前文档里插入的表格(包括普通表格、电子表格、多维表格)内容虽然已经能被 AI 识别,但是识别效果还在进一步提升中。某篇文档如果主要用于 AI 智能问答,现阶段为了保证更好的问答效果,可以尽量都使用普通文本描述,避免大量有价值的信息都包含在表格中。 随着飞书团队持续丰富支持识别的数据类型,这些局限会逐渐消除、问答效果也会持续提升。
2024-11-18
识别英文语音为字幕的工具
以下是一些识别英文语音为字幕的工具: 1. Whisper(https://github.com/openai/whisper):这是一个优秀的字幕处理工具,能很好地识别视频/音频中的语言。Medium 尺寸能很好地解决英文的问题,中文处理方面,据宝玉 xp 的说法,Large 尺寸效果会好一些。但仅处理成英文对母语是中文的绝大部分人来说不够,最好有纯中文或双语字幕。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可以根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
识别英文语音为字幕的工具
以下是一些识别英文语音为字幕的工具: 1. Whisper(https://github.com/openai/whisper):这是一个优秀的字幕处理工具,能很好地识别视频/音频中的语言。Medium 尺寸能很好地解决英文的问题,中文处理方面,据宝玉 xp 的说法,Large 尺寸效果会好一些。但仅处理成英文对母语是中文的绝大部分人来说不够,最好有纯中文或双语字幕。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可以根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
识别英文歌歌词的AI工具
以下为您推荐识别英文歌歌词的 AI 工具:Suno。但需要注意的是,目前使用该工具做 hiphop 存在一定难度,比如咬字太清楚,没有懒音、吞音、连读和方言,可能导致原本两音可读完的“马水”,AI 一定会念“马思唯”,从而错开一个字,使 flow 和 beat 对不上后面全乱拍。稍微有点作用的解决方法是替换拟音歌词和手动断句,标记好主歌副歌位置。
2024-11-17
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
有什么特别好的AI识别图片的大模型API
以下是一些关于 AI 识别图片的大模型 API 相关的信息: 学习笔记《【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人》中提到,对于识别印刷体图片,会先将图片变成黑白、调整大小为固定尺寸,然后与数据库中的内容进行对比得出结论。但这种基于规则的方法存在多种局限,而神经网络专门处理未知规则的情况,在图片识别中具有优势。 搭建 OneAPI 可以汇聚整合多种大模型接口,方便后续更换使用各种大模型。 0 基础手搓的“AI 拍立得”概念旨在简化操作流程,提升效率。用户可以选择拍摄场景类型并立即拍照,AI 会自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈。其实现场景包括图片转成文本和图片转绘图片等。例如,图片转成文本时,大模型会根据选择的场景生成与内容相关的文字描述或解说文本。
2024-11-11
leap提示词技术
以下是关于 leap 提示词技术的相关内容: 在工作中,将两个观察联系起来,对 PROMPT ENGINEERING A PROMPT ENGINEER 进行研究,构建元提示指导 LLM 更有效地进行提示词工程。引入元提示组件,如逐步推理模板和上下文规范,从常见优化概念中汲取灵感并引入口头化对应物。在两个数学推理数据集上测试并确定最佳性能组合 PE2,其在 MultiArith 和 GSM8K 数据集上取得了强大的实证性能,在多种设置中超过自动提示词工程基准,在反事实任务上最为有效,在优化生产中使用的冗长、真实世界提示词方面也证明了适用性。 实验中将方法与普通人类提示词、ChainofThought,并介绍了实施细节。 随着 LLM 和生成式 AI 的发展,提示词设计和工程将更关键,讨论了基础和尖端方法,如检索增强生成(RAG),自动提示词工程(APE)这样的创新未来可能成为标准实践。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
ai诈骗防范措施和技术手段
以下是关于 AI 诈骗防范的一些措施和技术手段: 1. 政府层面: 拜登签署的 AI 行政命令要求,开发最强大 AI 系统的开发者需向美国政府分享安全测试结果和其他关键信息。对于可能对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。 商务部将制定内容认证和水印的指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具,为公众识别官方内容提供便利,并为私营部门和全球各国政府树立榜样。 2. 技术层面: 国家技术标准研究所将制定严格的标准进行广泛的红队测试,以确保在公开发布前的安全性。 国土安全部将把这些标准应用于关键基础设施部门,并建立 AI 安全和安保委员会。能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。 3. 企业层面: 360 立志解决大模型的安全问题,将大模型的安全问题分为三类进行研究。 在个人层面,要提高对 AI 诈骗的警惕性,不轻易相信来源不明的信息,学会识别可能的 AI 生成的虚假内容。
2024-11-21
Ai诈骗的技术分析
AI 诈骗通常利用了以下技术手段: 1. 利用 AI 生成的虚假内容:AI 模型可能生成不存在的人物、地点、事件,或者对已知事实进行错误的描述,从而制造虚假信息来误导用户。 2. 模仿真实信息:通过对训练数据中统计模式的过度依赖,生成看似真实但实际与现实不符的内容,以假乱真。 3. 针对用户认知偏差:如同人类认知偏差中的确认偏误、可得性偏差、锚定效应等,AI 诈骗内容可能会迎合这些偏差,让用户更容易接受和相信虚假信息。 产生的原因包括: 1. 训练数据问题:如果训练数据存在偏差、错误或不全面,模型会学习到这些问题并反映在生成的内容中。 2. 模型结构和训练策略:不合理的模型结构和训练策略可能导致模型无法准确理解和生成真实有效的信息。 其影响主要有: 1. 误导用户做出错误决策,例如在投资、消费等方面。 2. 传播虚假信息,破坏信息的真实性和可靠性。 3. 在一些关键领域如医疗诊断中,可能引发安全事故,延误患者治疗。 为了防范 AI 诈骗,需要建立相关的标准和最佳实践来检测 AI 生成的内容,并对官方内容进行认证和标记,例如商务部可以开发内容认证和水印的指导方针,联邦机构可以利用这些工具让公众更容易识别真实的官方通信。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20