Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

不同大模型之间会相互串联吗?

Answer

目前不同大模型之间一般不会直接相互串联。

大模型的发展仍在不断演进中。在语言模型方面,Token 被视为模型处理和生成的文本单位,输入文本会被分词数字化形成词汇表,为便于计算机处理,还会将 Token 表示成稠密矩阵向量,即 embedding,常见算法包括基于统计、深度网络和神经网络的多种方式。以 Transformer 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。

多模态大模型方面,虽然取得了重大进展,但面临着巨大的计算量问题。研究重点在于各模态的连接,合理利用现成的训练好的单模态基础模型,减少训练费用并提升效率。不同模态的模型通常是分开训练的,如何将它们连接起来实现协同推理是核心挑战,主要通过多模态预训练和多模态的指令微调来实现模态之间以及模型输出与人类意图的对齐。

在企业应用中,大模型还未发展到通用人工智能阶段,不能期望一个大模型解决所有问题。在企业内部,更可能是多个专注于不同专业的大模型通过协作和组合来工作。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID|<br>|-|-|<br>|The|345|<br>|cat|1256|<br>|sat|1726|<br>|…|…|数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。

多模态大模型入门指南-长文慎入【持续更新】

最近,多模态大模型取得重大进展。随着数据集和模型的规模不断扩大,传统的MM模型带来了巨大的计算量,尤其是从头开始训练的话。研究人员意识到MM的研究重点工作在各个模态的连接上,所以一个合理的方法是利用好现成的训练好的单模态基础模型,尤其是LLM。这样可以减少多模态训练的费用,提升训练效率。MM-LLM利用LLM为各种MM任务提供认知能力。LLM具有良好的语言生成,zero-shot和ICL的能力。其他模态的基础模型则提供了高质量的表征。考虑到不同模态的模型是分开训练的,如何将不同模态连接起来,实现协同推理,是核心挑战。这里面的主要工作便是通过多模态预训练和多模态的指令微调,来实现模态之间的对齐,以及模型输出与人类意图的对齐。

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

那么很多人这里边有一个误区,老以为说我这个企业,比如中国企业家,我就做一个大模型,就解决我所有的问题。注意这个想法是不现实的,因为目前大模型没有发展到AGI,它还不是通用人工智能。大家记着,AGI是通用人工智能时代,没有带到来。所以现在大模型只能在专项技能上发挥作用,如果你期望他什么都能做,这个期望是不切实际的。今年OpenAI和通用大模型遇到的所有问题,为什么它的是留存率比较低呢?就是因为他承诺我什么都能做,你去用的时候,有时候你的体验特别好,对吧?所以在企业内部,我们像我们很多人都懂IT,我们这么多年,我们管员工的有HR软件,我们管客户里有CRM软件,我们管财务里有财务软件,你见过有一家软件商把所有这软件都做到一个软件里了吗?所以未来在企业内部不可能是只有一个大模型,大家记住我这句话,而是一定有多个大模型,每个大模型干不同的专业。大模型通过协作,通过组合来工作,这是未来。所以我们企业要不你就不整,要整企业内部绝对不止一个大模型。

Others are asking
你可以推荐一些能够提高企业效率和生产力的AI工具,AI工具串联的资料给我吗
以下是一些能够提高企业效率和生产力的 AI 工具: 销售相关: Salesforce 爱因斯坦:来自 Salesforce,能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还能自动化日常或耗时任务。 Clari:专门从事智能收入运营,能统一数据并以易理解方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,处理重复性任务和耗时研究。 编程相关: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,提供代码建议。 通义灵码:阿里巴巴推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数预训练大模型生成代码。 Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 此外,小红书上也有相关优质科技内容案例,如: ,体裁为视频,点赞 1.8 万,推荐理由是工具用途和优点介绍清晰不拖沓。 ,体裁为视频,点赞 6000,推荐理由是视频制作专业,文稿结构清晰简洁。
2024-08-28
国内文生图模型
以下是关于国内文生图模型的相关信息: Recraft 模型:用 8 个月自研模型,包含处理数据的模型、标注工作、训练 OCR 模型、新构建的数据集等。Recraft 生成带有长文本图像的流程图解,但存在生成默认是外国面孔而非亚洲面孔且生成的亚洲人不太自然的情况,可能与数据集有关。只有少数公司真正从头训练模型,创建自己的模型困难且成本高,需要超强团队和资金。 模型能力方面: 文本编码器的能力是文生图模型语义理解能力的关键。一开始大部分模型使用 CLIP 作为文本编码器,但存在一些问题。新的模型纷纷优化文本编码器能力,如引入更大更强的 T5XXL 或结合多个特征,但开源模型在中文生图方面能力一般。 腾讯开源的 HunyuanDiT 是较可用的中文生图模型,但仍存在优化空间。 Kolors 是最近开源的给力文生图模型,改进全面,技术实力强。
2025-01-21
吴恩达大模型教程
以下是一些与吴恩达大模型相关的教程和资源: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 提示工程指南: 地址: 简介:基于对大语言模型的兴趣编写的全新提示工程指南,介绍了相关论文研究等。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:由两位 LLM 创业者维护的 Langchain 中文文档。 LLM 九层妖塔: 地址: 简介:包含 ChatGLM 等实战与经验。 目录:吴恩达讲 Prompt https://github.com/zard1152/deepLearningAI/wiki Coze 复刻:吴恩达开源的 AI 翻译项目 复刻步骤:包括配置反思优化的提示词、结合反思优化建议再次翻译、选择输出方式等。 大语言模型分为基础 LLM 和指令微调 LLM 两类。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会使用人类反馈强化学习(RLHF)技术优化。提示的关键原则包括尽可能保证下达的指令“清晰、没有歧义”,给大模型思考的时间以及足够的时间去完成任务。
2025-01-21
有哪个大模型工具可以提供“word文本转excel表格”功能
以下是一些可以将 word 文本转 excel 表格的大模型相关方法: 1. Markdown 格式输出 Markdown 编辑器 Excel:将大模型的输出结果复制到 Markdown 编辑器(如 Typora),然后再直接复制到 Excel,就可以得到直接可用的数据文档。 2. Markdown 格式输出 Excel 数据分组:把大模型的输出直接复制到 Excel,一般使用 Excel 的数据分列功能,用“|”作为分隔符号处理数据。 3. Markdown 格式输出 Excel 数据分组:要求大模型把输出转换成 CSV 格式,然后把结果复制到 txt 文档,另存为成 csv 文件(注意:txt 另存为时,文件后缀名更改为.csv,编码选择 ANSI)。
2025-01-21
有哪个大模型工具可以提供“word技术规范书转功能清单”功能
目前尚未有确切的大模型工具专门提供“word 技术规范书转功能清单”的功能。但一些通用的自然语言处理工具和办公软件的插件可能会对您有所帮助,例如一些基于云服务的办公自动化工具,不过其效果可能因具体的文档内容和格式而有所差异。
2025-01-21
集文档管理、AI写作、资料搜索的AI大模型推荐
以下为您推荐一些集文档管理、AI 写作、资料搜索功能于一体的 AI 大模型: 1. RAG: 工作原理:就像超级智能的图书馆员,包括检索(从庞大知识库中找相关信息)、增强(筛选优化信息)、生成(整合信息给出连贯回答)。 优点:成本效益高、灵活性强、可扩展性好。 缺点:回答准确性相对不够。 相关网站:Metaso.cn(学术、研究)、So.360.com(生活、便捷)、Devv.ai(程序员、开发者)、Perplexity(付费、高质量)、Bing.com(通用)、Google.com(全球、精准)。 内幕:平均调用 9 次大语言模型,网络爬虫预先建立数据库,用便宜但推理弱的模型(免费版)。 2. 对于律师工作: AI 大模型擅长:信息检索与整理、模式识别与预测、自动化文档处理、多任务处理能力。 AI 大模型不擅长:法律解释与推理、理解道德和情感、创新或个性化的服务。 律师擅长:法律专业知识、沟通与谈判。 3. 沉浸式翻译:主打所有网页双语翻译、PDF 文档对照阅读,新功能可一键开启网页中 Youtube 视频的双语字幕。插件安装地址:https://immersivetranslate.com/ 4. Kimi:由月之暗面科技有限公司开发,最大特点是超长文本(支持最多 20 万字的输入和输出)处理和基于文件、链接内容对话的能力,能阅读并理解多种格式文件内容为用户提供回复。
2025-01-21
生成3d模型的ai?
以下为一些生成 3D 模型的 AI 工具: 1. 3dfy.ai: 概览:是一家专注于将稀疏数据转化为逼真三维世界的公司,领导团队由计算成像领域资深专家组成。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型,在特定时期尤为重要。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 网址:https://3dfy.ai/ 2. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速 2D 到 3D 转换,提供 AI 驱动的精准度和细节。 3. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成,用户可上传图片并描述材质和风格生成高质量 3D 模型。 4. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 5. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成,用户可上传图片或输入文本提示词来生成 3D 模型。 6. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 这些工具通常具有用户友好的界面,允许用户通过简单操作生成 3D 模型,无需专业 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-20
pytorch跟cuda之间的关系
PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。 例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。
2024-12-01
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
agi是什么,aigc又是什么,他们之间有什么区别
AGI 即通用人工智能(Artificial General Intelligence),是一种目标,旨在让机器展现出像人类一样的广泛智慧和能力。 AIGC 是人工智能生成内容(Artificial Intelligence Generated Content),是利用人工智能技术生成包括文本、图像、音频和视频等各种类型内容的新型生产方式。AIGC 技术可应用于自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等多种领域。 它们的区别在于:AGI 追求的是机器具备全面的、类似人类的智能,而 AIGC 侧重于利用人工智能技术来生成特定的内容。 AIGC 与 UGC(用户生成内容)、PGC(专业生成内容)的关系如下: AIGC 是由人工智能生成的内容,优势在于能快速、大规模生成内容,适用于需大量内容的场景,如自动化新闻、广告创作等。 UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2024-10-20
多Agent之间的调用教程
以下是关于多 Agent 之间调用的教程: 《执笔者》中的多 Agent 模式操作步骤: 1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将自动切换为多 agent 调试状态,相比单 agent,多了中间的 agent 连接区。 2. 添加合适节点:有两种方式选择节点,即使用已发布的 bot 或创建新的 agent,按需选取,添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面,无结束节点。 3. 添加合适的 prompt:在多 agent 模式下,为每个 agent 填写合适的 prompt,外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。 4. 调试与美化:经过以上三步,一个多 agent 的 bot 基本搭建完成,之后是漫长的调试过程,若输出与设想有差异,可不断调整外围和内部 bot 的提示词,提升命中率,优化交互。 沉浸式单机剧本杀 Bot 中的多 Agent 协作: 单机剧本杀 Bot 由多个 agent 共同协作完成,主要包括: 1. 主持人 Agent:通过对话引导玩家,通过提示和发放道具帮助玩家推进情节,像全知全能的主持人帮助玩家在游戏过程中前进。 2. 条件判断 Agent:负责解析玩家输入,判断是否达到触发下一情节的条件,若条件符合,把相应情节传递给主持人 Agent 继续讲解。 3. 情节向量化处理与索引构建:对剧本内容进行向量化处理,自动分段并构建索引,使主持人和判断 Agent 能迅速、准确地检索所需内容,让剧情展开更流畅。 关于 MultiAgent 的介绍: 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前常见框架主要集中在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈,在任务完成过程中,Agent 可能需要与用户进行多轮交互。 同时,越来越多的 Agent 框架开始关注多 Agent 场景,为完成任务,为不同的 Agent 指定不同角色,并通过 Agent 之间的协作来完成复杂任务,与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。
2024-09-25
文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些AI工具之间有什么不同,各自擅长哪些领域
以下是文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些 AI 工具的不同之处及各自擅长的领域: Kimi 智能助手:由 Moonshot AI 出品,有着超大“内存”,可以一口气读完二十万字的小说,还会上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子,陪聊天、答疑解惑,与搜索有较好的结合。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作,与钉钉有结合应用。 腾讯混元:相对较为低调,公司文化特点及目前尚未有明确亮点可能是其受到关注较少的原因。 讯飞星火:暂未提及具体特点和擅长领域。 抖音豆包:字节旗下产品,字节在 AI 领域有较大投入和决心,如推出多种相关产品和应用。 智普清言:暂未提及具体特点和擅长领域。 需要注意的是,这些 AI 工具的性能和擅长领域可能会随着不断的更新和优化而发生变化。
2024-08-18