Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

不同大模型之间会相互串联吗?

Answer

目前不同大模型之间一般不会直接相互串联。

大模型的发展仍在不断演进中。在语言模型方面,Token 被视为模型处理和生成的文本单位,输入文本会被分词数字化形成词汇表,为便于计算机处理,还会将 Token 表示成稠密矩阵向量,即 embedding,常见算法包括基于统计、深度网络和神经网络的多种方式。以 Transformer 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。

多模态大模型方面,虽然取得了重大进展,但面临着巨大的计算量问题。研究重点在于各模态的连接,合理利用现成的训练好的单模态基础模型,减少训练费用并提升效率。不同模态的模型通常是分开训练的,如何将它们连接起来实现协同推理是核心挑战,主要通过多模态预训练和多模态的指令微调来实现模态之间以及模型输出与人类意图的对齐。

在企业应用中,大模型还未发展到通用人工智能阶段,不能期望一个大模型解决所有问题。在企业内部,更可能是多个专注于不同专业的大模型通过协作和组合来工作。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID|<br>|-|-|<br>|The|345|<br>|cat|1256|<br>|sat|1726|<br>|…|…|数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。

多模态大模型入门指南-长文慎入【持续更新】

最近,多模态大模型取得重大进展。随着数据集和模型的规模不断扩大,传统的MM模型带来了巨大的计算量,尤其是从头开始训练的话。研究人员意识到MM的研究重点工作在各个模态的连接上,所以一个合理的方法是利用好现成的训练好的单模态基础模型,尤其是LLM。这样可以减少多模态训练的费用,提升训练效率。MM-LLM利用LLM为各种MM任务提供认知能力。LLM具有良好的语言生成,zero-shot和ICL的能力。其他模态的基础模型则提供了高质量的表征。考虑到不同模态的模型是分开训练的,如何将不同模态连接起来,实现协同推理,是核心挑战。这里面的主要工作便是通过多模态预训练和多模态的指令微调,来实现模态之间的对齐,以及模型输出与人类意图的对齐。

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

那么很多人这里边有一个误区,老以为说我这个企业,比如中国企业家,我就做一个大模型,就解决我所有的问题。注意这个想法是不现实的,因为目前大模型没有发展到AGI,它还不是通用人工智能。大家记着,AGI是通用人工智能时代,没有带到来。所以现在大模型只能在专项技能上发挥作用,如果你期望他什么都能做,这个期望是不切实际的。今年OpenAI和通用大模型遇到的所有问题,为什么它的是留存率比较低呢?就是因为他承诺我什么都能做,你去用的时候,有时候你的体验特别好,对吧?所以在企业内部,我们像我们很多人都懂IT,我们这么多年,我们管员工的有HR软件,我们管客户里有CRM软件,我们管财务里有财务软件,你见过有一家软件商把所有这软件都做到一个软件里了吗?所以未来在企业内部不可能是只有一个大模型,大家记住我这句话,而是一定有多个大模型,每个大模型干不同的专业。大模型通过协作,通过组合来工作,这是未来。所以我们企业要不你就不整,要整企业内部绝对不止一个大模型。

Others are asking
你可以推荐一些能够提高企业效率和生产力的AI工具,AI工具串联的资料给我吗
以下是一些能够提高企业效率和生产力的 AI 工具: 销售相关: Salesforce 爱因斯坦:来自 Salesforce,能分析大量数据集识别潜在客户,生成预测性潜在客户评分,还能自动化日常或耗时任务。 Clari:专门从事智能收入运营,能统一数据并以易理解方式呈现,简化财务预测过程。 Hightime:销售团队的 AI 助手,处理重复性任务和耗时研究。 编程相关: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,提供代码建议。 通义灵码:阿里巴巴推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数预训练大模型生成代码。 Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 此外,小红书上也有相关优质科技内容案例,如: ,体裁为视频,点赞 1.8 万,推荐理由是工具用途和优点介绍清晰不拖沓。 ,体裁为视频,点赞 6000,推荐理由是视频制作专业,文稿结构清晰简洁。
2024-08-28
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
我是少儿编程老师,现在我需要知道编程每个语言之间的区别,并绘制出一张思维导图给我详细介绍
很抱歉,目前没有关于编程各语言区别的详细内容来为您绘制思维导图。但一般来说,不同的编程语言在语法、应用场景、性能特点等方面存在差异。例如,Python 语法简洁,常用于数据科学和人工智能;Java 应用广泛,在企业级开发中表现出色;C++ 性能高效,常用于系统编程和游戏开发等。您可以通过在线编程学习网站、相关书籍以及技术论坛获取更详细准确的信息来绘制思维导图。
2025-02-19
pytorch跟cuda之间的关系
PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。 例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。
2024-12-01
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
agi是什么,aigc又是什么,他们之间有什么区别
AGI 即通用人工智能(Artificial General Intelligence),是一种目标,旨在让机器展现出像人类一样的广泛智慧和能力。 AIGC 是人工智能生成内容(Artificial Intelligence Generated Content),是利用人工智能技术生成包括文本、图像、音频和视频等各种类型内容的新型生产方式。AIGC 技术可应用于自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等多种领域。 它们的区别在于:AGI 追求的是机器具备全面的、类似人类的智能,而 AIGC 侧重于利用人工智能技术来生成特定的内容。 AIGC 与 UGC(用户生成内容)、PGC(专业生成内容)的关系如下: AIGC 是由人工智能生成的内容,优势在于能快速、大规模生成内容,适用于需大量内容的场景,如自动化新闻、广告创作等。 UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2024-10-20
多Agent之间的调用教程
以下是关于多 Agent 之间调用的教程: 《执笔者》中的多 Agent 模式操作步骤: 1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将自动切换为多 agent 调试状态,相比单 agent,多了中间的 agent 连接区。 2. 添加合适节点:有两种方式选择节点,即使用已发布的 bot 或创建新的 agent,按需选取,添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面,无结束节点。 3. 添加合适的 prompt:在多 agent 模式下,为每个 agent 填写合适的 prompt,外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。 4. 调试与美化:经过以上三步,一个多 agent 的 bot 基本搭建完成,之后是漫长的调试过程,若输出与设想有差异,可不断调整外围和内部 bot 的提示词,提升命中率,优化交互。 沉浸式单机剧本杀 Bot 中的多 Agent 协作: 单机剧本杀 Bot 由多个 agent 共同协作完成,主要包括: 1. 主持人 Agent:通过对话引导玩家,通过提示和发放道具帮助玩家推进情节,像全知全能的主持人帮助玩家在游戏过程中前进。 2. 条件判断 Agent:负责解析玩家输入,判断是否达到触发下一情节的条件,若条件符合,把相应情节传递给主持人 Agent 继续讲解。 3. 情节向量化处理与索引构建:对剧本内容进行向量化处理,自动分段并构建索引,使主持人和判断 Agent 能迅速、准确地检索所需内容,让剧情展开更流畅。 关于 MultiAgent 的介绍: 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前常见框架主要集中在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈,在任务完成过程中,Agent 可能需要与用户进行多轮交互。 同时,越来越多的 Agent 框架开始关注多 Agent 场景,为完成任务,为不同的 Agent 指定不同角色,并通过 Agent 之间的协作来完成复杂任务,与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。
2024-09-25