Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

pytorch跟cuda之间的关系

Answer

PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。

例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。

Content generated by AI large model, please carefully verify (powered by aily)

References

[音乐学习] AI音乐向100分迈进,钢琴曲音质修复

以Windows为例:Python:由于实用到了f-string,至少要python 3.6以上版本,推荐现在比较流行的python 3.10ffmpeg:需要把ffmpeg里bin文件夹设置path环境变量,让python可以正常调用在cmd界面运行ffmpeg,可以查看到版本信息,就是变量设置成功了cuda:如果使用GPU来处理音频,可以用cuda提速,我是3050显卡,一首歌半分钟就转完了pytorch:一定要对应cuda对应的支持版本,否则程序无法正确运行目前cuda官网最新的版本是[12.4](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local#),对应找到配套的[Pytorch](https://pytorch.org/get-started/locally/)版本,cuda12.1,实测可以匹配cuda 12.4下载完以后默认安装就可以本地运行完成安装如果没有N卡,可以用cpu代替cuda进行运算处理,缺点就是速度慢一些,代码中可以做一些相应调整(后面会讲到)[heading1]生成MID文件[content]把源文件放在input文件夹(支持MP3,WAV)可以直接用vs code运行start.py,也可以右键点击文件夹空白,打开Powershell窗口输入在cmd环境运行原始的start.py代码里是默认cuda运行的如果用cpu跑,还得把里面的cuda改成cpu,有点麻烦,我做了个简单的条件语句,这样可以在判定cuda不可用时自动转为cpu模式。转谱完成后,在output文件夹找到对应的mid文件

延伸阅读

python 3.8及以上版本pytorch 1.13.1及以上版本transformers 4.26.1及以上版本建议使用CUDA 11.7及以上1、仓库克隆及依赖安装2、模型权重下载([链接](https://huggingface.co/Kwai-Kolors/Kolors)):或者3、模型推理:4、Web demo:[heading3]在Diffusers中使用[content]确保您安装了最新版本的diffusers(0.30.0.dev0):注意:KolorsPipeline默认使用EulerDiscreteScheduler作为噪声调度器。我们推荐使用该调度器时搭配guidance scale=5.0及num_inference_steps=50。KolorsPipeline同时支持EDMDPMSolverMultistepScheduler。在使用该噪声调度器时,推荐使用参数guidance scale=5.0及num_inference_steps=25。除了文生图能力,KolorsImg2ImgPipeline同时也支持图文生图功能。运行以下指令进行图像生成:

实战教程:基于 Sovits 的声音训练及推理

报错:页面文件太小,无法完成操作。答:增大系统虚拟内存大小,方法各种地方都能搜得到,不展开了。报错:torch.cuda.OutOfMemoryError:CUDA out of memory答:爆显存了,训练遇到的话调小批量大小,推理遇到的话使用强制切片RuntimeError:DataLoader worker(pid(s)xxxx)exited unexpectedly答:把虚拟内存再调大一点。报错:CUDA error:CUBLAS_STATUS_NOT_INITIALIZED when calling 'cublasCreate(handle)'答:爆显存了,基本上跟CUDA有关的报错大都是爆显存......报错:torch.multiprocessing.spawn.ProcessExitedException:process 0 terminated with exit code 3221225477答:调大虚拟内存报错:'HParams' object has no attribute 'xxx'答:无法找到音色,一般是配置文件和模型没对应,打开配置文件拉到最下面看看有没有你训练的音色报错:The expand size of the tensor(768)must match the existing size(256)at non-singleton dimension 0。答:把dataset/44k下的内容全部删了,重新走一遍预处理流程报错:Given groups=1,weight of size[xxx,256,xxx],expected input[xxx,768,xxx]to have 256 channels,but got 768 channels instead答:vec256的模型用了vec768的配置文件,如果上面报错的256的768位置反过来了那就是vec768的模型用了vec256的配置文件,请参考本文的的旧模型兼容,确认你的配置文件和模型维度对应。报错:配置文件中的编码器与模型维度不匹配答:在修改配置文件中的"speech_encoder"时修改错了,检查配置文件中的"ssl_dim"一项,如果这项是256,那你的

Others are asking
自定义采样器(高级) Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu!(when checking argument for argument mat2 in method wrapper_CUDA_mm)
以下是关于“自定义采样器(高级)”中“Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu!(when checking argument for argument mat2 in method wrapper\_CUDA\_mm)”错误的解决办法: 错误原因:Expected all tensors to be on the same device,but found at least two devices,cuda:0 and cpu! 对应插件地址:https://github.com/sipie800/ComfyUIPuLIDFluxEnhanced 资料链接: 百度网盘:通过网盘分享的文件:ComfyUI_PuLID_Flux_ll 链接:https://pan.baidu.com/s/1dMLAb4s0vroO9Zk6ecKb7Q?pwd=cycy 提取码:cycy 来自百度网盘超级会员 v5 的分享 说明文档:https://www.xiaobot.net/post/b98d55699a754b9baac242a3e285be94 由于 AI 技术更新迭代,请以文档更新为准 更多内容收录在:https://xiaobot.net/p/GoToComfyUI 网盘:https://pan.quark.cn/s/129886bbcc61 相关链接: ComfyUI_PuLID_Flux_ll :https://github.com/lldacing/ComfyUI_PuLID_Flux_ll?tab=readmeovfile guozinan/PuLID 模型:https://huggingface.co/guozinan/PuLID/tree/main
2025-02-03
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
Pytorch cuda 对应的关系
在使用 PyTorch 与 CUDA 时,需要注意它们的对应关系。以 Windows 为例,如果您使用 GPU 来处理音频,可以用 CUDA 提速。目前 CUDA 官网最新的版本是 12.4(https://developer.nvidia.com/cudadownloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local),对应找到配套的 PyTorch 版本,例如 CUDA 12.1 实测可以匹配 CUDA 12.4。下载完成后默认安装即可。一定要确保 PyTorch 对应 CUDA 支持的版本,否则程序无法正确运行。如果没有 N 卡,可以用 CPU 代替 CUDA 进行运算处理,但速度会慢一些,代码中可以做相应调整。
2024-11-29
什么是pytorch
PyTorch 是由 Facebook 的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名,特别适合研究和快速原型开发。在一些应用场景中,如 AI 音乐处理,需要对应 CUDA 对应的支持版本才能正确运行。目前 CUDA 官网最新的版本是版本,如 cuda12.1 实测可以匹配 cuda 12.4。下载完后默认安装即可。
2024-12-10
如何卸载pytorch
在 Mac 系统中卸载 PyTorch 的步骤如下: 1. 以您想要操作的目录为例,在终端中输入 `cd Documents/ComfyUI`,导航到 ComfyUI 目录。 2. 使用以下命令创建并激活 Python 虚拟环境: `python3 m venv venv` `source venv/bin/activate` 3. 执行以下命令卸载 PyTorch:`pip3 uninstall torch torchvision torchaudio`
2024-12-02
AI入门的pytorch代码,举例子
PyTorch 是一个流行的开源机器学习库,广泛用于计算机视觉和自然语言处理等应用。以下是使用 PyTorch 进行简单线性回归的入门代码示例: ```python import torch import torch.nn as nn 假设我们有一些数据点 x_train = torch.tensor y_train = torch.tensor 定义一个简单的线性模型 class LinearRegressionModel: def __init__: super self.linear = nn.Linear 1个输入特征,1个输出特征 def forward: return self.linear 实例化模型 model = LinearRegressionModel 定义损失函数(均方误差) criterion = nn.MSELoss 定义优化器 optimizer = torch.optim.SGD 训练模型 num_epochs = 100 for epoch in range: 前向传播 outputs = model loss = criterion 反向传播和优化 optimizer.zero_grad 清除之前的梯度 loss.backward 反向传播,计算当前梯度 optimizer.step 根据梯度更新参数 if % 10 == 0: print 测试模型 with torch.no_grad: 测试时不需要计算梯度 predicted = model print 打印最终参数 print print ``` 这段代码首先导入了必要的 PyTorch 模块,然后创建了一些简单的输入数据 `x_train` 和对应的目标输出 `y_train`。接着定义了一个线性回归模型 `LinearRegressionModel`,该模型包含一个线性层 `nn.Linear`。然后定义了损失函数 `MSELoss` 和优化器 `SGD`。 在训练循环中,我们执行了前向传播、计算损失、执行反向传播并更新模型参数的步骤。每训练10个周期,我们打印一次当前的损失值。训练完成后,我们使用 `with torch.no_grad` 语句测试模型的预测结果,并打印出模型学到的权重和偏置。 这是一个非常基础的 PyTorch 入门示例,适合初学者理解 PyTorch 的基本概念和操作流程。
2024-06-11
Ai生图和生视频和电脑算力的关系
AI 生图和生视频与电脑算力密切相关。 在生成图像和视频的过程中,需要强大的算力来处理复杂的计算任务。例如,像 PIKA1.0 这样的模型,在文生图和文生视频方面表现出色,其高质量和稳定性的输出依赖于足够的算力支持。 拥有大规模 GPU 集群、超算集群、云渲染平台等强大算力资源的企业或个人,能够更高效地完成生图和生视频的任务。 同时,未来算力的重点将从训练模型转向增强推理能力,这也将对 AI 生图和生视频的发展产生重要影响。 此外,一些新的模型和技术不断涌现,如 o1 推理模型,其在给出最终结果前会反复推演和验证,以提供更准确的结果。而像 OpenAI 发布会公布的 Sora v2 功能,能够生成 1 分钟长度的视频,并支持多种形式的转换,提升了多媒体创作的灵活性。 总之,电脑算力是实现高质量 AI 生图和生视频的重要支撑和保障。
2025-02-17
AGI和AIGC是啥关系,分别是什么的缩写
AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。 AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
2025-02-13
关于AI与人类的关系,请说一些金句
以下是一些关于 AI 与人类关系的金句: 1. 未来拓展人类智力和能力的新型人工智能交互和协作方式是非常有前景的。我们期待创造性地利用人工智能技术来支持人类代理和创造力,增强和扩展人类能力,以实现创新和职业转型的丰富机会。 2. 一些社会角色可能会面临因 AI 的崛起而变得不那么有价值或过时的风险。然而,投资于支持和扩展人类问题解决和决策能力的任务、方法和机械,存在巨大的机会。 3. 当我们把 AI 当人来看待,它作为一个 Copilot,是一个很好的助手,也是一个非常好的朋友。 4. 个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。 5. AI 技术再爆炸一万倍,AI 的生态位也还是一种似人而非人的存在。 6. 当你想让 AI 实现愿望时,基于它的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩它的自由度。
2025-02-10
comfy ui 和 web ui是什么关系?有什么区别?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 它们的关系是:ComfyUI 可以和 WebUI 共享环境和模型。 区别主要包括以下方面: 操作方面:ComfyUI 操作门槛高,需要有清晰的逻辑;WebUI 相对操作更简便。 性能方面:ComfyUI 对显存要求相对较低,启动速度快,出图速度快;系统资源占用更少。 自由度方面:ComfyUI 具有更高的生成自由度。 生态方面:WebUI 的生态比 ComfyUI 更多,但 ComfyUI 也有针对其开发的有趣插件。 种子处理和提示词权重处理:处理方式不同,会导致图像不同。例如种子处理,ComfyUI 通过 GPU 计算种子噪声,WebUI 通过 CPU。 硬件配置方面:ComfyUI 配置更低,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。而 SDXL 出来后,ComfyUI 运行配置提高,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡,内存在 16G 以上。硬盘最好使用 SSD 以提高加载模型速度。
2025-02-08
comfy UI和stable diffusion有什么区别?它们的关系是什么?
ComfyUI 和 Stable Diffusion 的区别及关系如下: ComfyUI 是一个基于节点流程式的 Stable Diffusion AI 绘图工具 WebUI。 区别: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 WebUI 多(常用的都有),也有一些针对 ComfyUI 开发的有趣插件。 关系:ComfyUI 集成了 Stable Diffusion 的功能,通过将 Stable Diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 在从 WebUI 到 ComfyUI 过渡时,需要了解采样器与调度器。简单理解为:采样器负责生成图像,而调度器负责控制噪声减少的速度。可以将 Stable Diffusion 模型中的采样器和调度器理解为一个加噪和去噪的过程。在这个过程中,采样器负责向图像添加噪声,而调度器则负责控制去噪的速度。 Stable Diffusion 是一种扩散模型的变体,叫做“潜在扩散模型”。它最初称为潜在扩散模型,CLIP 将用户输入的 Prompt 文本转化成 text embedding,核心组件包括 VAE EncoderDecoder、UNET 等。ComfyUI 的存放路径为 models/checkpoints/,Stable Diffusion 有不同的模型实例,如 SD1.5、SDXL 等,还有不同的训练方法和模型格式。
2025-02-08
ai绘画与ai视频是否有关联关系
AI 绘画与 AI 视频存在关联关系。 从以下方面可以体现: 1. 创作方面:在语言驱动的创作中,AI 绘画和 AI 影像都属于概念画笔的应用范畴,目前都处于探索阶段,尚未找到最合适的表现形式。 2. 应用方面:AI 绘画的应用领域广泛,包括个体成为自媒体博主、个体商户应用、实体印刷、AI 摄影、设计接单、AI 定制萌娃头像、电商商品、自媒体素材、AI 服装预售、AI 视频接单、培训老师等,其中就包含了 AI 视频接单。 3. 发展影响方面:AI 绘画和 AI 视频都在逐渐改变着传统艺术的面貌,对艺术的审美观念和市场需求产生影响。尽管存在争议,但都为艺术创作提供了新的可能性,如帮助创作者探索新的创意表达方式、提高制作效率、降低制作成本,促进与观众的互动,提供个性化和互动的体验。 然而,AI 绘画和 AI 视频也存在一些局限性和引发的问题,如在表达情感和创造性意图方面的不足,以及带来的版权、原创性和伦理等方面的争议。
2025-02-08
ldap和ad之间是什么关系
LDAP(轻型目录访问协议)是一种用于访问和管理目录服务的开放协议。AD(Active Directory)是微软基于 LDAP 协议开发的一种目录服务。 AD 利用了 LDAP 协议的特性来实现对网络资源和用户的集中管理、认证和授权等功能。可以说 AD 是基于 LDAP 协议构建的一个具体的、功能丰富的目录服务系统。 总的来说,LDAP 是一种通用的协议,而 AD 是基于 LDAP 协议的特定实现,并针对微软的环境进行了优化和扩展。
2024-11-12
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
agi是什么,aigc又是什么,他们之间有什么区别
AGI 即通用人工智能(Artificial General Intelligence),是一种目标,旨在让机器展现出像人类一样的广泛智慧和能力。 AIGC 是人工智能生成内容(Artificial Intelligence Generated Content),是利用人工智能技术生成包括文本、图像、音频和视频等各种类型内容的新型生产方式。AIGC 技术可应用于自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等多种领域。 它们的区别在于:AGI 追求的是机器具备全面的、类似人类的智能,而 AIGC 侧重于利用人工智能技术来生成特定的内容。 AIGC 与 UGC(用户生成内容)、PGC(专业生成内容)的关系如下: AIGC 是由人工智能生成的内容,优势在于能快速、大规模生成内容,适用于需大量内容的场景,如自动化新闻、广告创作等。 UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。 PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。
2024-10-20
多Agent之间的调用教程
以下是关于多 Agent 之间调用的教程: 《执笔者》中的多 Agent 模式操作步骤: 1. 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面将自动切换为多 agent 调试状态,相比单 agent,多了中间的 agent 连接区。 2. 添加合适节点:有两种方式选择节点,即使用已发布的 bot 或创建新的 agent,按需选取,添加的 agent 直接连接在默认的总管 agent(“执笔者”)后面,无结束节点。 3. 添加合适的 prompt:在多 agent 模式下,为每个 agent 填写合适的 prompt,外围的人设填写该 bot 的主要功能,内部的 bot 填写各个 bot/agent 的应用场景。 4. 调试与美化:经过以上三步,一个多 agent 的 bot 基本搭建完成,之后是漫长的调试过程,若输出与设想有差异,可不断调整外围和内部 bot 的提示词,提升命中率,优化交互。 沉浸式单机剧本杀 Bot 中的多 Agent 协作: 单机剧本杀 Bot 由多个 agent 共同协作完成,主要包括: 1. 主持人 Agent:通过对话引导玩家,通过提示和发放道具帮助玩家推进情节,像全知全能的主持人帮助玩家在游戏过程中前进。 2. 条件判断 Agent:负责解析玩家输入,判断是否达到触发下一情节的条件,若条件符合,把相应情节传递给主持人 Agent 继续讲解。 3. 情节向量化处理与索引构建:对剧本内容进行向量化处理,自动分段并构建索引,使主持人和判断 Agent 能迅速、准确地检索所需内容,让剧情展开更流畅。 关于 MultiAgent 的介绍: 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统近期受到广泛关注。Agent 系统旨在利用 LLM 的归纳推理能力,为不同的 Agent 分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。 目前常见框架主要集中在单 Agent 场景下,其核心在于 LLM 与工具的协同配合,LLM 根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈,在任务完成过程中,Agent 可能需要与用户进行多轮交互。 同时,越来越多的 Agent 框架开始关注多 Agent 场景,为完成任务,为不同的 Agent 指定不同角色,并通过 Agent 之间的协作来完成复杂任务,与单 Agent 相比,在任务完成过程中,与用户的交互可能会减少一些。
2024-09-25
文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些AI工具之间有什么不同,各自擅长哪些领域
以下是文心一言、通义千问、Kimi、腾讯混元、讯飞星火、抖音豆包、智普清言这些 AI 工具的不同之处及各自擅长的领域: Kimi 智能助手:由 Moonshot AI 出品,有着超大“内存”,可以一口气读完二十万字的小说,还会上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子,陪聊天、答疑解惑,与搜索有较好的结合。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作,与钉钉有结合应用。 腾讯混元:相对较为低调,公司文化特点及目前尚未有明确亮点可能是其受到关注较少的原因。 讯飞星火:暂未提及具体特点和擅长领域。 抖音豆包:字节旗下产品,字节在 AI 领域有较大投入和决心,如推出多种相关产品和应用。 智普清言:暂未提及具体特点和擅长领域。 需要注意的是,这些 AI 工具的性能和擅长领域可能会随着不断的更新和优化而发生变化。
2024-08-18
不同大模型之间会相互串联吗?
目前不同大模型之间一般不会直接相互串联。 大模型的发展仍在不断演进中。在语言模型方面,Token 被视为模型处理和生成的文本单位,输入文本会被分词数字化形成词汇表,为便于计算机处理,还会将 Token 表示成稠密矩阵向量,即 embedding,常见算法包括基于统计、深度网络和神经网络的多种方式。以 Transformer 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 多模态大模型方面,虽然取得了重大进展,但面临着巨大的计算量问题。研究重点在于各模态的连接,合理利用现成的训练好的单模态基础模型,减少训练费用并提升效率。不同模态的模型通常是分开训练的,如何将它们连接起来实现协同推理是核心挑战,主要通过多模态预训练和多模态的指令微调来实现模态之间以及模型输出与人类意图的对齐。 在企业应用中,大模型还未发展到通用人工智能阶段,不能期望一个大模型解决所有问题。在企业内部,更可能是多个专注于不同专业的大模型通过协作和组合来工作。
2024-07-21