Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

像文心一言、kimi之类的人工智能助手还有哪些

Answer

以下是一些常见的人工智能助手:

  1. Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长篇小说、上网冲浪,还能协助处理资料和生成内容。
  2. 文心一言:百度出品的 AI 对话产品,可写文案、想点子、聊天、答疑解惑。
  3. 通义千问:由阿里云开发,能够与人交互、回答问题及协作创作。

此外,还有夸克、豆包等。更多大模型产品,您可以访问相关网站查看。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:国内免费的大模型app有哪些?

Kimi智能助手、文心一言、通义千问这几个都是国内免费的APP。Kimi智能助手:Kimi是一个有着超大“内存”的智能助手,可以一口气读完二十万字的小说,还会上网冲浪,Moonshot AI出品的智能助手。文心一言:百度出品的AI对话产品,它的定位是智能伙伴,能写文案、想点子,又能陪你聊天、答疑解惑。通义千问:通义千问是由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作。还有更多大模型产品,可以访问网站查看:内容由AI大模型生成,请仔细甄别。

SOP:如何利用 AI 30分钟不到打造爆款公众号文章

收集完资料后,紧接着的任务是对这些资料进行整理。我通常会使用月之暗面开发的[Kimi](http://kimi.moonshot.cn)这个AI会话助手。[Kimi](http://kimi.moonshot.cn)具备读取网页内容的能力,并且能够在此基础上生成一定的内容。当[Kimi](http://kimi.moonshot.cn)读取完毕时,会显示绿色标点作为提示。需要注意的是,[Kimi](http://kimi.moonshot.cn)的阅读能力有一定的限制,它可能无法一次性处理大量的资讯,或者某些网站的内容可能无法被读取。为了克服这些限制,我们可以分批次地将资料提供给[Kimi](http://kimi.moonshot.cn),确保它能有效地读取并理解所有可用的网站内容。这样我们资料都读取了,就让他整理下资讯内容。它做的还不错,我挺满意的。接下来就是让它转化成一篇吸引人的公众号文章了。

《2024年度AI十大趋势报告》发布:技术创新、产品洗牌、行业动态一文看尽

为了更好地还原国内AI产品的现状,量子位智库从用户规模、新增速度、用户活跃和用户粘性四⼤⻆度进行了数据统计。目前,APP端和Web端均尚未出现比肩互联⽹时代现象级破圈之作的产品,且整体来看和海外同类型产品相差5倍以上。在APP端,⽬前还没有产品能够拿出全维度的亮眼表现,市场缺乏诞生杀手级产品的场景。截⾄2024年10⽉,共56款产品的历史下载量超百万,8款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。而从单月新增来看,夸克、豆包和Kimi智能助手月增长可达到千万级,10款产品可达百万级;DAU方面,夸克DAU超过2600万,豆包、Kimi、天天跳绳和文小言DAU超百万;用户粘性方面,夸克和叨叨三日留存率超过30%。在Web端,AI智能助⼿赛道外的所有赛道都基本处于停滞状态,AI搜索、AI写作、AI⽣图等赛道甚⾄出现了头部产品数据下滑、或是下滑后回升乏力的情况。用户规模方面,月总访问量超千万的共7款产品,包括夸克、腾讯文档、百度文库、Kimi智能助手、文心一言、豆包和通义。而在用户活跃度上,共3款产品——夸克、Notion和百度文库的MAU超过千万,19款产品MAU超过百万。仅有14款产品人均每月访问超过5次,13款产品平均访问时长超过10分钟。在数据统计基础上,「量子位智库AI 100」通过综合100和原生100两张榜单提名了国内优秀的AI产品。

Others are asking
目前市面上的文心一言,通义,deepseek等,用于写作效果如何
目前市面上的文心一言、通义、DeepSeek 等用于写作的效果各有特点: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 通义(阿里巴巴):在特定领域和任务上表现出卓越的能力。 DeepSeek:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,不同模型的效果会因用户的具体需求和使用场景而有所差异。
2025-02-26
文心一言的收费模式
文心一言将从 4 月 1 日起全面免费。申请开通文心一言的 API 需前往百度 。
2025-02-24
对DeepSeek-R1、GPT-4o、文心一言、通义千文、豆包、海信星海和混元模型的性能对比分析
以下是对 DeepSeekR1、GPT4o、文心一言、通义千文、豆包、海信星海和混元模型的性能对比分析: 通义千问: 通义团队将 Qwen2.5Max 与目前领先的开源 MoE 模型 DeepSeek V3、最大的开源稠密模型 Llama3.1405B 以及同样位列开源稠密模型前列的 Qwen2.572B 进行了对比。在所有 11 项基准测试中,Qwen2.5Max 全部超越了对比模型。 Qwen2.5Max 已在阿里云百炼平台上架,企业和开发者可通过阿里云百炼调用新模型 API,也可在全新的 Qwen Chat 平台上使用。 DeepSeekR1: 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量。 其“聪明”源于独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”新阶段。 其思考与表达碾压了包括 GPT4o、Claude Sonnet3.5、豆包等模型,思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。 目前关于文心一言、海信星海和混元模型在上述内容中未提供具体的性能对比信息。
2025-02-12
请对比文心一言、豆包、天工、Kimi以上几个软件各自的优势
以下是文心一言、豆包(字节跳动)、天工(不太明确您提到的天工具体所指,可能是指某些特定的模型或产品)、Kimi 这几个软件的优势对比: 文心一言 4.0(网页版): 优势:由百度开发,可能在某些特定领域的知识储备和语言理解能力上有一定优势。 豆包(字节跳动): 优势:无需科学上网,使用方便。 Kimi: 优势:不需要科学上网,无收费,不需要登录可以直接使用;有案例,点击预设问题即可开始尝试。 需要注意的是,对于不同的用户和应用场景,这些软件的优势可能会有所不同,其表现也会受到数据、算法、训练等多种因素的影响。
2025-01-16
文心一言和通义千问哪个更强
文心一言和通义千问在不同方面各有特点。 对于律师答辩状 prompt 的评测: 文心一言: 输入起诉状后,直接给出起诉状范本,未理解 prompt 输出答辩状。经提示输出的答辩状存在主体少、不专业、错误多等问题,但提示输出应诉方案时,能按 prompt 结构输出,内容简洁明了,可作为框架使用。 通义千问: 输入起诉状后,欢迎语直接,无废话,能正确处理两个答辩人,但专业度稍差,未引用具体法律条文。提示输出应诉方案时,能按 prompt 结构输出,整体内容及格,无亮点。 在结构化 prompt 的测试和反馈中: 文心一言的综合评分为 2.25 分,整体表现一般。 通义千问的综合评分为 3.125 分,表现还算不错,若内容再提高些,体验感和专业性会更好。 此外,文心一言和通义千问都是国内免费的 APP。文心一言是百度出品的 AI 对话产品,定位为智能伙伴;通义千问是由阿里云开发的聊天机器人。
2025-01-07
文心一言比赛
以下是关于文心一言的相关测评信息: 1. 小七姐的测评: 任务一:短提示。设置让模型生成能根据用户需求写出合适的 RPG 游戏策划(包括角色、剧情、玩法和场景等内容)的提示词。文心一言在输出结果上依然有自问自答的问题,得分 75。 任务二:少样本示例。同样是生成上述提示词,本轮用少样本提示框定了模型的输出内容,四个大模型的输出都有很大提升,文心一言得分 80。 2. 中文大模型基准测评 2023 年度报告: 简介:文心一言是百度全新一代知识增强大语言模型,于 2023 年 3 月 16 日正式发布,10 月 17 日发布 V4.0 版本,已有 7000 万用户。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高,是国内有竞争力的大模型。 适合应用:能力栈广泛,可应用场景多。重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。
2025-01-03
如何登录KIMI
要登录 Kimi,您可以参考以下步骤: 1. 推荐两个实用的浏览器插件:在(不方便下载的,文末附下载链接)。 2. 在浏览器中登录自己的 Kimi 账号,关联网页版。 安装相关插件的特点和注意事项: 1. Kimi Copilot网页总结助手: 特点:极简,点击一键总结,没有其它花里胡哨的功能;Kimi 无法访问的网页也可以进行总结,如推特等;英文文章直接用中文总结要点;支持 Dark Mode。 注意:本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品;由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 2. Kimi 阅读助手: 特点:用更简单的方式使用 Kimi。 注意:需要 Chrome 114 及以上版本才能正常使用扩展;暂不支持 Arc 游览器(Arc 缺少相关 API)。 在 Obsidian 中使用 Kimi 的步骤: 1. 用命令面板打开刚才创建的页面,默认快捷键 Ctrl+P 。 2. 在弹出的搜索框中输入插件名称:custom frames 。 3. 在下拉选项中选择 OpenKimi 。 4. 打开刚才设置好的 Kimi 窗口。 以上是关于登录 Kimi 以及相关插件和使用的信息。
2025-03-14
如何在Kimi创建我的个人知识库
以下是在 Kimi 创建个人知识库的相关信息: 使用 GPT 打造个人知识库: 由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量并保存。 当用户提问时,将问题也转换成向量,与向量储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings: embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示。 常见的向量距离计算方式是欧几里得距离。 使用 Coze 创建个人知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式(目前支持文档、表格、图片)并填写信息。 可选择本地文档或问答对表格,还能进行自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:
2025-03-07
我是一个新手小白,帮构思一下关于如何学习AI的PPT .要求有包括豆包,AI数字人,KIMI,灵犀,如影,剪映,即梦等APP学习技术。都带上APP网址
以下是为您构思的关于如何学习 AI 的 PPT 大纲: 幻灯片 1:封面 标题:如何学习 AI 幻灯片 2:目录 1. AI 辅助 PPT 的原理和作用 2. 几款 PPT 生成工具(网站) 3. 相关 APP 介绍 幻灯片 3:AI 辅助 PPT 的原理和作用 1. 减轻排版工作的压力 2. 生成打底的内容,减轻人写内容的工作 3. 文章生成 PPT,让 AI 帮忙摘要内容,生成大纲列表 4. 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容 5. 在特定场景下不用改直接用,如学生快速为小组展示配 PPT 幻灯片 4:AI 辅助 PPT 的流程 1. 用户输入 2. AI 输出 3. 排版 网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版 幻灯片 5:几款 PPT 生成工具(网站) 1. 讯飞智文:https://zhiwen.xfyun.cn/ (免费引导好) 2. Mindshow.fun :http://Mindshow.fun (Markdown 导入) 3. kimi.ai :http://kimi.ai (选 PPT 助手暂时免费效果好) 4. Tome.app :http://Tome.app (AI 配图效果好) 5. Chatppt.com :http://Chatppt.com (自动化程度高) 6. 百度文库:https://wenku.baidu.com (付费质量好) 幻灯片 6:相关 APP 介绍 1. 豆包 2. AI 数字人 3. KIMI 4. 灵犀 5. 如影 6. 剪映(图文成片,只需提供文案,自动配图配音) 7. 即梦 希望以上内容对您有所帮助!
2025-03-05
国产ai,除了deepseek能力最强,如元宝ai,文言一心,kimi,纳米ai,通义等,哪个能力最强
以下是关于国产 AI 产品在 2025 年 1 月的一些榜单情况: 在国内流量榜中,排名依次为:deepseek、豆包、Kimi、文心一言、deepseek 开放平台、百度 AI 助手、阿里通义、纳米 AI 搜索、秘塔 AI 搜索。 在国内月活榜中,排名依次为:deepseek、豆包、deepseek 开放平台、Kimi、百度 AI 助手、文心一言、知乎直答、纳米 AI 搜索、沉浸式翻译。 需要注意的是,不同 AI 产品在不同方面可能具有各自的优势,其能力的强弱也会因具体应用场景和用户需求而有所不同。
2025-02-26
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
人工智能的意义
人工智能具有多方面的重要意义: 从监管角度看,有效监管人工智能需要对其有共同的理解。目前对于人工智能没有广泛共识的通用定义,但通过参考其“适应性”和“自主性”这两个产生定制监管响应需求的特性来定义。“适应性”使解释系统结果的意图或逻辑变得困难,“自主性”使结果的责任分配变得困难。 从产业发展角度看,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产模式和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设发挥重要支撑作用。我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模,伴随新技术加速迭代,呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 从学科本身角度看,人工智能是一门研究如何使计算机表现出智能行为,例如做人类擅长之事的科学。对于一些无法明确编程的任务,如根据照片判断人的年龄,正是人工智能感兴趣的领域。在金融、医学和艺术等领域,人工智能也带来了诸多益处。
2025-03-28
我希望了解人工智能大模型公司的整体产业情况
以下是关于人工智能大模型公司的整体产业情况: 2024 年被称为国内大模型落地元年,经过一年时间的发展,呈现出以下特点: 1. 竞争格局:国内大模型行业基本形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争态势。 2. 落地增长:2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长。中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 3. 厂商表现:百度在中标数量和金额方面排名所有厂商之首,科大讯飞居第二。在金融行业,百度也排名第一。 4. 行业应用:在智能终端行业,超半数手机厂商使用文心大模型,多家车企已接入百度文心大模型。 5. 能力要求:大模型进入产业落地后,除模型本身能力外,落地应用所需的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业落地大模型需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正成为体系化之战。 此外,2023 年国内大模型发展情况包括:智谱推出了 4 代 GLM,MiniMax 推出新模型及“星野”APP,月之暗面在长 Token 能力上表现出色。但在 2C 端真正出圈的产品较少,在 2B 行业中,大模型对收入撬动有限。硬件层上,国内仍缺乏胜任大模型训练的芯片,华为昇腾在单卡指标上接近,但存在稳定性和生态问题。
2025-03-27
人工智能是什么,有什么用
人工智能(AI)是一种能够模拟人类智能的技术。它已经在众多领域发挥着重要作用,为社会带来了广泛的益处。 以下是一些主要的应用场景: 1. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新疗法。 个性化医疗:根据患者数据提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(相关具体应用未在提供的内容中明确提及) 在法律法规方面,各国和地区都在制定相关规则,以规范人工智能的发展和应用,确保其在带来益处的同时,降低可能产生的风险。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
我是新手小白,先学习人工智能开发,从而找工作,如何开始
对于新手小白想要学习人工智能开发从而找工作,可以按照以下步骤开始: 1. 了解自身硬件情况和财力,选择合适的开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的,可以使用在线工具,包括在线出图和云电脑,根据实际情况选择,前者功能可能受限,后者需手动部署。 配台电脑:不建议一开始就配主机,玩几个月后仍对 AI 有兴趣再考虑,主机硬盘要大,显卡在预算内买最好,其他随意。 2. 学习相关课程: 先验经验:需要熟练使用文生图、图生图,有一定逻辑思考和推理能力,适合炼丹新人、小白。 课程安排:课程约 70 80%是理论和方法论内容,大部分练习在课外沟通、练习,少部分必要内容在课上演示。 学习路径:必学、必看内容是基础课,解决环境和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具安装教程;正式内容分为数据集预处理、模型训练以及模型调试及优化三个部分。 3. 进行项目实践,例如: 可以参考“齐码蓝:你(或孩子)还需要学编程吗?AI 编程 Master GPTs”中的项目,先进行需求分析与项目规划,包括功能需求(如每个离谱生物的页面展示图片、头像、文字介绍,支持文字和语音对话,展示相关离谱事件)和非功能需求(页面加载速度快、用户界面友好、支持响应式设计),以及用户故事(如访客浏览不同离谱生物档案、了解背景故事和相关事件、进行文字或语音交流)。 然后进行架构设计与模块化,采用前后端分离架构,前端负责展示界面和用户交互,后端负责处理业务逻辑和数据存取,通过 REST API 实现前后端交互,模块化分为前端模块(生物档案组件、事件展示组件、对话组件)和后端模块(生物档案 API、事件 API、语音处理 API)。 4. 了解法律法规:阅读《促进创新的人工智能监管方法》,了解 AI 在社会和经济中的应用和影响,以及相关的监管环境。
2025-03-24