Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是一个agi的小白我该从哪开始学习AGI

Answer

对于 AGI 小白,以下是一些学习建议:

  1. 参考《雪梅 May 的 AI 学习日记》:如果您还在观望 AI,不知从何入手,可以先看其目录。作者从一开始的到处看到现在走在学习 AI 的轨道上,学习模式是输入→模仿→自发创造。但日记中的学习内容可能因 AI 节奏快而不适用,您可去 waytoAGI 社区发现自己感兴趣的领域,学习最新内容。学习时间并非每天依次进行,而是有空时学习。
  2. 参考完整的学习路径:建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。
  3. 借鉴他人经验:YoYo 作为文科生,在学习前不理解 AI 和提示词工程,通过不断尝试走了不少弯路。学习后能搓多 Agent 的智能体,在公司中实践智能客服等。其学习路径的关键词为“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,强调学以致用,通过学习-分享-不断填补知识的缝隙来成长。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系。

Content generated by AI large model, please carefully verify (powered by aily)

References

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

说明:1.适合纯AI小白:如果你还在观望AI,不知道从何入手,可以参考我这个日记。你可以先看左边的目录,会发现我现在已经快到100天了,在这个时间跨度里,我从一开始的到处看看到现在觉得自己已经走在了一条学习AI的轨道上。2.学习模式是什么:我平时有记录笔记的习惯,所以积累了这份AI学习日记。我最近整理复盘了这将近100天记录的日记后,我发现我学习AI的模式是输入→模仿→自发创造。如果你没有自信一开始就用费曼学习法来接触AI,那你可以试试我这个实践出来的学习模式。3.学习内容:我日记里的学习内容你可以不用直接复用,因为AI的节奏太快了,很多学习的材料在半年后的现在可能已经不适用了。比如coze之前共学的那些课程,你会发现coze已经改版了,如果你按照老课程来模仿,产品功能不一样了,对你来说会有转换的门槛。你可以去waytoAGI社区发现你自己感兴趣的AI领域,去学习你自己想学的最新的内容。4.有时间学吗:在半年多的时间跨度中,其中有100天在学习AI,所以这里的DAY(天数)不是每天依次进行,而是有空的时候学习。目前我进行到了90天,希望自己能够坚持满100天,甚至更多时间。5.学习状态:我在2024年保持了比较好的学习状态,有意愿和动力也能头脑清醒的学进去东西。这种状态不仅体现在学AI,我在2024年还看了33本书,像《穷查理宝典》这样的大部头都能看进去。所以如果你看到这个100天日记觉得自己很难做到,那是学习状态没有到最好,不用有心里压力,能学多少算多少就行。6.有费用吗:本日记中学习资源的内容都是免费开源的,真的很感谢这些把信息开源的人,这样会AI的人才会越来越多。我也是秉持这个理念,把我的学习日记开源了

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

YoYo:我在通往AGI的学习之路心得

千人千面,仅代表个人的学习实践,仅供参考启发。[heading2]澄清内容,方便大家参考[heading3]学习前状态[content]不理解什么是AI,什么是提示词工程,但是不影响使用的一个蛮干的状态个人是个文科生,不懂代码,英语也非常差;在学习AGI之前的状态是,注册尝试各种AI工具,走了不少弯路对ChatGPT的认识,仅限于日常问答,SQL学习交互,能够支持工作数据提取[heading3]学习后现状[content]终于可以搓多Agent的智能体,但是需要进修python搓更多智能体营销文案demo,SQL代码进阶学习应用创建了3个图像流智能体,2个Agent智能体玩具🪀在公司中实践智能客服从创建到应用的过程,实现企业微信机器人问答的基本功能学习Dr.kown的尝试实践图像流的尝试企业智能体实践,智能客服[heading2]在AGI的学习路径[content]关键词:#少就是多#先有个初识#目录索引推荐#兴趣最重要#先动手学习路径,主线+支线的游戏通关~最后,个人感受真的学不完,找到适合自己的就好学以致用,通过学习-分享-不断填补知识的缝隙,成长的一种路径。[heading2]关于我[content]大家好~我是yoyo🐱🐈坐标北京,铲屎官一枚🫡AIGC的小白,持续进阶成长,打造一个自己的智能体☕️以上期待能够给到各位一点启发感谢家属带我在“[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)”打开新世界,接触有趣的事情,结识有趣的人

Others are asking
如何用waytoagi生成视频
以下是关于生成视频的几种方式: 1. 使用 Runway 生成视频: 网页:https://runwayml.com/ 注册:在右上角 Sign Up 注册,输入邮箱与基础信息,完成邮箱验证。 选择 Try For Free 模式:新注册用户会有 125 个积分进行免费创作(约为 100s 的基础 AI)。 生成第一个视频步骤: 选择左侧工具栏“生成视频”。 选择“文字/图片生成视频”。 将图片拖入框内。 选择一个动画系数。 点击生成 4 秒视频。 下载视频。 2. 使用 Adobe 生成带有文本提示和图像的视频: 网址:https://www.adobe.com/products/fi 在 Advanced 部分,您可以使用 Seed 选项,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。 选择 Generate(生成)。 3. 使用 Aimwise WaytoAGI 百家号文旅分享中的 EBS 丝滑转绘生成视频: 选择文件夹。 导入视频。 设置帧率,调整边数,设置视频高度,设置最大帧数(可在剪辑软件查看,或计算帧率秒)。 点击进行预处理。 使用 ebsynth: 打开 ebsynth。 将 keys 文件夹拖入 keyframes。 将 frames 文件夹拖入 video。 点击 run all 生成视频。 如果视频被拆分为多个文件夹,则需重复上述步骤。 回到 temporal kit。 点击重组 ebsynth,生成视频。
2025-01-14
agi是什么
AGI 即人工通用智能(Artificial General Intelligence),是指能够做任何人类可以做的事的人工智能。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 目前,AI 分为 ANI 和 AGI,ANI(Artificial Narrow Intelligence 弱人工智能)得到巨大发展,而 AGI 还没有取得巨大进展。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2025-01-14
什么是AGI
AGI 即强人工智能或通用人工智能,是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 AGI 的五个发展等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 更多信息请见(AGI)。OpenAI 原计划在 2026 年发布的 Q的下一阶段(最初被称为 GPT6,后重新命名为 GPT7),由于埃隆·马斯克最近的诉讼而被暂停。计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。
2025-01-13
这个通往AGI知识库有什么用?
“通往 AGI 之路”知识库具有以下重要作用: 1. 它是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,用户既是知识的消费者,也是知识的创作者。 2. 以“无弯路,全速前进”为目标,助力每一个怀揣 AI 梦想的人疾速前行。 3. 其生长得益于每一位用户的支持,通过大家的努力不断探寻 AGI 领域的无限可能。 4. 不仅是知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 5. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程,将文字化为视觉与听觉的现实。 6. 追踪 AI 领域最新的进展,时刻更新,让用户紧跟 AI 领域的步伐,每次访问都能有新的收获。 7. 无论用户是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。 相关链接: https://waytoagi.com/(通往 AGI 之路) 即刻体验:https://waytoagi.com/
2025-01-13
帮我介绍下 AGI
AGI 即通用人工智能,以下为您详细介绍: OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 此外,WaytoAGI(通往 AGI 之路)是一个致力于人工智能学习的中文知识库和社区平台。它为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。其特点包括: 1. 知识库与社区平台:汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 2. 学习资源:提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 3. 实践活动:定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 4. 开放共享:引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 5. 用户基础:在没有任何推广的情况下,一年时间已有超过 100 万用户和超千万次的访问量。 6. 目标与愿景:目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。 OpenAI 的创始人 Sam Altman 曾发表相关反思,回首过去几年的创业历程,认为这段时光充满价值、挑战和难忘。展望 2025 年,他坚信首批 AI Agent 将开始融入劳动力市场,为各行各业带来变革。随着通用人工智能(AGI)的脚步日益临近,现在是回顾公司发展历程的重要时刻。大约九年前,OpenAI 怀揣着对 AGI 潜力的坚定信念创立,渴望探索如何构建它,并使其惠及全人类。
2025-01-13
agi是什么
AGI 即通用人工智能(Artificial General Intelligence),指能够做任何人类可以做的事。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品执行任务后仍需人类参与,尚未达到完全智能体水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 目前,AI 分为 ANI 和 AGI,ANI(弱人工智能)得到巨大发展,但 AGI 还没有取得巨大进展。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2025-01-13
小白怎么搭建一个智能体?
对于小白搭建智能体,可参考以下步骤: 1. 智能体创建: 进入 coze 官网(www.coze.cn),注册并登录。 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可结构化数据的存储和调用,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 2. 图像流搭建: 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流,为文本大模型提供图像生成能力。比如为 marvin 机器人加入图像流,按照步骤创建图像流并设定图像流名称以及描述(注意名称只能是英文)。 了解图像流节点的意义:在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能。智能处理工具包括“智能生成”“智能抠图”和“画质提升”等;基础编辑工具如画板、裁剪、调整、添加文字等可满足日常图片编辑需求;风格处理类工具如风格迁移、背景替换能让图片更有创意。 根据需求进行图像流设计: 生成海报功能在总结故事后,将完整的故事作为输入。 对输入的故事进行一轮提示词优化,从自然语言转变为更符合文生图大模型的提示词。 将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报。 测试图像流。
2025-01-13
我是一个ai小白,我是个一个0基础的人,我想在这个网站进一步系统的了解ai的应用,请给我推荐一下
以下是为您推荐的系统了解 AI 应用的内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 同时,您还可以学习以下 AI 相关知识作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,您还可以参考以下文章和推荐: 1. 《》:推荐了适合新手使用的 AI 产品,如聊天对话类、图像类、视频类、PPT 类、音频类和私人定制类,包括国内外的产品如 Kimi、智谱清言、ChatGPT 和 Midjourney 等。 2. 《》:通过生动的故事探讨自然语言处理(NLP)、自然语言理解(NLU)和自然语言生成(NLG)的核心概念。 3. 《》:设想了未来 150 年内 AI 原住民与智能机器的共生关系。
2025-01-13
小白如何学AI?
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 发展迅速,新成果和技术不断涌现,关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白。学习模式为输入→模仿→自发创造,学习内容可在 waytoAGI 社区发现自己感兴趣的 AI 领域并学习最新内容。学习时间灵活,资源免费开源。
2025-01-12
我是AI小白如何接触AI领域
对于 AI 小白接触 AI 领域,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,这适合纯 AI 小白。其学习模式是输入→模仿→自发创造。学习内容可根据您的兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,日记中的学习资源免费开源。如果您学习状态未达最佳,不必有压力,能学多少算多少。
2025-01-12
作为一个AI小白,想了解AI或者说想了解AI如何使用
以下是为您提供的关于AI的全面介绍和使用方法: 一、如何认识AI 对于没有理工科背景的人来说,理解AI可能有一定难度。可以将AI视为一个黑箱,它是能理解自然语言并输出自然语言、模仿人类思维的东西。其生态位类似于传统道教中的驱神役鬼拘灵遣将,或者某种可以理解人类文字但不是人的魔法精灵/器灵。无论AI技术如何发展,其生态位仍是似人而非人的存在。在与AI相处时,当想让其实现愿望,要基于其“非人”的一面,尽可能通过语言文字压缩其自由度,清晰告知任务、边界、目标、实现路径方法以及所需的正确知识。 二、新手如何学习AI 1. 了解AI基本概念 阅读「」部分,熟悉AI的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解AI的历史、应用和发展趋势。 2. 开始AI学习之旅 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习 AI领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,建议掌握提示词技巧。 4. 实践和尝试 理论学习后进行实践,巩固知识。 在知识库分享实践后的作品和文章。 5. 体验AI产品 与ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人互动,了解其工作原理和交互方式。 三、How I Use AI 作者Nicholas Carlini是技术大佬,他的博文「How I Use "AI"」是使用LLM进行编程和研究的实例分享,并给出了完整的提示词。他通过以下方式使用AI: 1. 构建完整的Web应用,获得超千万次页面浏览量。 2. 学习新技术,如Docker、Flexbox和React等。 3. 开启新项目,获取样板代码。 4. 简化代码,使复杂大型代码库更易理解。 5. 自动化单调任务,如数据格式化。 6. 提升用户专业度和效率,让普通用户像专家一样工作。 7. 获取API Reference,不必翻看查找文档。 8. 进行搜索,效果比传统搜索引擎好。 9. 解决一次性任务,省时省力。 10. 找到常见任务的解决方案。 11. 修复常见错误,比传统搜索更高效。
2025-01-11
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习,同时掌握提示词的技巧。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 6. 持续学习和跟进: AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白,学习模式为输入→模仿→自发创造。但其中的学习内容可能因 AI 发展而变化,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。该日记中的学习资源免费开源,且学习时间灵活,不必有压力,能学多少算多少。
2025-01-09
有哪些AI入门知识可以学习
以下是一些 AI 入门知识供您学习: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于不会代码的您,还可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 微软也提供了为期 12 周、共 24 课时的 AI 初学者入门课程,您将深入学习符号人工智能、神经网络、计算机视觉、自然语言处理等内容。在课程中您将学到实现人工智能的不同方法、神经网络和深度学习、处理图像和文本的神经架构等,同时也会了解到课程不包括的内容。译者:Miranda,课程原网址 https://microsoft.github.io/AIForBeginners/ 。如果想提升学习效果,可以亲身实践课程内容、做随堂小测试或根据课程内容开展实验。这套课程是由专家设计的人工智能综合指南,它非常适合初学者,覆盖了 TensorFlow、PyTorch 及人工智能伦理原则。
2025-01-14
零基础学习
以下为零基础学习 AI 的相关内容: 二师兄的 AI 启蒙之路: 2024 年 2 月,在七彩虹售后群老哥的分享下,获得 SD 秋叶安装包和教学视频,迈出 AI 学习第一步。 2024 年 3 月,啃完 SD 教程并开始炼丹,但因图片数据集质量一般,lora 仅供自嗨。 2024 年 4 月,与小伙伴探讨 AI 变现途径,尝试相关项目,过程中练了一些绘本风格的丹。 2024 年 5 月,因工作变动,开启无硬件支持的 AI 学习之路,加入 Prompt battle 社群,学习 Midjourney 并打磨文生图提示词。 雪梅 May 的 AI 学习日记: 2024 年 11 月 24 日,好奇程序员写前端代码,在 B 站乱搜零基础学代码教程,体验前端网页制作。 2024 年 11 月 30 日,学习吴恩达用 AI 学 Python 课程 1。 2024 年 12 月 1 日,学习吴恩达用 AI 学 Python 课程 2。 2024 年 12 月 7 日,学习吴恩达用 AI 学 Python 课程 3。 刘海对“AI 提示词工程师”的见解和经验分享: 岗位技能要求包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象集成互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 零基础小白学习建议:找网上教程,看科普类教程,阅读 OpenAI 文档,理解参数作用,推荐使用一些练手的 Prompt 工具和相关教程文档。
2025-01-14
转型ai产品经理怎么学习
以下是关于转型为 AI 产品经理的学习建议: 1. 入门学习: 可以通过 WaytoAGI 等开源网站或相关课程了解 AI 的概念。 多使用 AI 产品并尝试动手实践应用搭建。 2. 研究阶段: 技术研究路径:对某一领域有认知,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉产品运营不分家的理念,关注场景、痛点、价值。 3. 落地应用: 积累成功落地应用的案例,产生商业化价值。 了解传统互联网产品经理的三个层级:负责功能模块与执行细节、负责整体系统与产品架构、熟悉行业竞争格局与商业运营策略。 对技术框架有一定了解,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。 您还可以参考以下案例和学习资源: 《雪梅 May 的 AI 学习日记》:其中提到用 ComfyUI 的工作流加上 Cursor 的前端网页,完整制作个人 AI 产品的方向。 《放下傲慢!停止自欺欺人!与其做 AI 的主人,不如做它的搭档》:讲述了在与 AI 合作过程中,放下执念让 AI 主导以及全程让 AI 参与的经验。
2025-01-14
怎么学习chatgpt
以下是一些学习 ChatGPT 的方法: 1. 利用推特博主分享的 GPT 工作流: 把特定的 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文)。 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,对俚语部分加粗,还会举一反三给出更多例子。 输入特定语句,ChatGPT 会输出对话回顾并建议 3 个推荐任务强化记忆。 建议开一个窗口复制 prompt,手机端打开历史记录,点右上角耳机图标打电话,既能练口语又能练听力,结束后看回顾帮助阅读。 群友在讯飞上尝试了类似版本,效果不错。 2. 深入了解相关知识: 从基础到实践,学习使用 GPT 的 Action,包括了解 OpenAI 对智能体能力模型的定义,深入探讨 ChatGPT 中的 Action(搜索、画图、代码解释器)以及 GPT 系列中的不同 Action。 初步了解 API 的概念,以及 GPT 如何通过 Action 与外部数据进行交互和使用。 对 Action 感兴趣可以从系统学习 API 相关知识、网上寻找可用 API 练习、发掘 GPT Action 更多潜力等方向继续前进。 3. 借鉴他人经验: 数据科学博士研究生杰森·方将其用作双向交流途径,有时用中文写一段话请 ChatGPT 帮忙润色,有时观察 ChatGPT 写的内容并据此写作。 企业家罗纳尔多·马那克在想不起特定单词时,简单描述让 GPT 找出。 作家和喜剧演员贝萨妮·格瑞斯·浩薇在需要灵感时让 ChatGPT 处理头韵、韵脚等。
2025-01-14
AI入门知识学习
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果希望继续精进,对于不会代码的新手,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-01-14
图像ai和视频ai怎么学习
以下是关于图像 AI 和视频 AI 学习的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 技术原理理解: 了解相关技术名词,如: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。 了解技术里程碑,如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-13