大模型技术对数据资产运营工作的提升点主要包括以下方面:
[title]蓝衣剑客:四万字长文带你通学扣子[heading2]四、如何在Coze上创建工作流、Bot[heading3]4.2常用工作流组件详解[heading4]4.2.1大模型组件这个特性适用于需要上下文理解或历史信息来做出更好响应的场景。通过利用对话历史,大模型可以更好地理解用户的需求,并在当前任务中考虑到之前的交互内容,从而提高回答的准确性和相关性。在大模型节点的参数选择中,有几个关键的设置需要我们关注:1.生成随机性:这个参数决定了模型生成回复时的创造性和随机度。通常,模型会提供几种预设模式,比如“精确模式”和“平衡模式”,以调整生成内容的随机性。2.Top P:这个参数影响模型生成文本时的多样性和连贯性。通过调整Top P值,可以控制模型在生成文本时考虑的词汇范围。3.最大回复长度:这个参数设置模型输出的最大字符数。默认情况下,这个值可能设置得较短,有时会导致模型的回复不完整,无法充分表达所需的信息。为了避免输出不完整的问题,建议将最大回复长度调整到最大值,这样可以增强节点处理任务的可靠性,并确保模型有足够的空间生成详尽且完整的回复。在大模型节点的操作中,我们引入了一项新特性——"异常忽略"。这项功能允许工作流在遇到模型处理任务失败或超时的情况下,继续执行而不会完全中断。当启用"异常忽略"时,如果大模型无法处理特定的任务,工作流会自动转入异常处理阶段。在这个阶段,你可以预设一系列的应对措施,比如记录错误日志、发送错误通知,或者启动备用的操作流程,以确保工作流的连续性和任务处理的可靠性。通过合理配置异常忽略和相应的异常处理逻辑,可以显著提升整个工作流在面对意外情况时的稳定性和效率。
一个主要关注点是模型的安全性,特别是其抵抗滥用和所谓的“越狱”攻击的能力,用户试图利用漏洞生成禁止或有害内容[96,97,98,99,100,101,102,103,104,105]。例如,AutoDAN[103],一种基于梯度技术的新型可解释对抗攻击方法,被引入以实现系统绕过。在最近的一项研究中,研究人员探讨了大型语言模型(LLMs)难以抵抗越狱攻击的两个原因:目标冲突和泛化不匹配[106]。除了文本攻击外,视觉越狱也威胁到多模态模型的安全(例如,GPT-4V[90]和Sora[3])。最近的一项研究[107]发现,大型多模态模型更容易受到攻击,因为额外的视觉输入的连续性和高维性使其对对抗攻击更加脆弱,代表了扩大的攻击面。
[title]观点:LLM落地思考以上是从技术手段上对LLM落地进行了一些思考,后面会针对B端和C端当前的一些现状来做一些分析。2、ToB业务再说说ToB业务,目前LLM的业务应用性在随着模型能力、模型成本、模型应用工程三方面的发展逐步推进,从ToB业务上对大模型的期许上看,可能主要有三点:1、模型能力提升到可以对某个垂直行业的通用知识实现较专业的掌握(至少达到5年左右行业人员的认知),并对行业中出现的各类任务可以有较强的泛化能力。2、模型的训练成本与部署推理的成本降低到接近2年企业服务支出的费用成本左右(即客户期望应用LLM虽然有较高的投入,但是不要高于以往的非LLM服务的2倍)这样既可以享受大模型的泛化能力并贴合技术热点,又可以在成本支出上打出一年投入、两年回本的概念。3、模型应用工程的服务尽量标准且可控,通过应用工程来让LLM与企业业务流快速且顺畅的打通,最终促成在多业务场景落地。目前进展最快的是应用工程的探索推进,(因为模型能力受限于行业数据的短缺,而模型推理成本又受限算力的卡脖子),应用工程上有三个方向比较受关注:1、基于行业数据微调小体量模型,通过一些指令数据来实现小模型对某些固定任务的有效处理,这比较适用于一些较稳定的行业业务,这些业务的特点可能是多年不发生明显变化的,比如白电企业的基于知识库的问题分析和解决。2、采用LangChain、Agent思路的流程自动化工程框架,然后结合各种工具,并与企业的各数据库对接,从而实现更先进、可用性更高、泛化性更强的RPA方案。这也是当前做ToB业务Agent的主流方向,并且与当前很多企业正在进行的业务数字化相辅相成。