直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI的技术历史和发展方向,目前最前沿的技术点有哪些,请以列表的方式梳理;并给出偏向技术研究以及应用的个人的学习路径

回答

AI技术的发展历程和前沿技术点可以概括如下:

AI技术发展历程

  1. 早期阶段(1950s-1960s): 专家系统、博弈论、机器学习初步理论
  2. 知识驱动时期(1970s-1980s): 专家系统、知识表示、自动推理
  3. 统计学习时期(1990s-2000s): 机器学习算法(决策树、支持向量机、贝叶斯方法等)
  4. 深度学习时期(2010s-至今): 深度神经网络、卷积神经网络、循环神经网络等

当前AI前沿技术点

  1. 大模型(Large Language Models): GPT、Gemini等
  2. 多模态AI: 视觉-语言模型(CLIP、Stable Diffusion)、多模态融合
  3. 自监督学习: 自监督预训练、对比学习、掩码语言模型等
  4. 小样本学习: 元学习、一次学习、提示学习等
  5. 可解释AI: 模型可解释性、因果推理、符号推理等
  6. 机器人学: 强化学习、运动规划、人机交互等
  7. 量子AI: 量子机器学习、量子神经网络等
  8. AI芯片和硬件加速

学习路径

偏向技术研究方向

  1. 数学基础: 线性代数、概率论、优化理论等
  2. 机器学习基础: 监督学习、无监督学习、强化学习等
  3. 深度学习: 神经网络、卷积网络、递归网络、注意力机制等
  4. 自然语言处理: 语言模型、文本分类、机器翻译等
  5. 计算机视觉: 图像分类、目标检测、语义分割等
  6. 前沿领域: 大模型、多模态AI、自监督学习、小样本学习等
  7. 科研实践: 论文阅读、模型实现、实验设计等

偏向应用方向

  1. 编程基础: Python、C++等
  2. 机器学习基础: 监督学习、无监督学习等
  3. 深度学习框架: TensorFlow、PyTorch等
  4. 应用领域: 自然语言处理、计算机视觉、推荐系统等
  5. 数据处理: 数据采集、清洗、特征工程等
  6. 模型部署: 模型优化、模型服务等
  7. 行业实践: 项目实战、案例分析等

无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
智能图书馆的技术价值
智能图书馆的技术价值主要体现在以下方面: RAG(检索增强生成)技术: 工作原理: 检索(Retrieval):如同图书馆员根据描述从庞大知识库中找出相关书籍和文章,系统从知识库或文档集合中找到与用户问题相关的内容。 增强(Augmented):类似图书馆员挑选出最相关段落和信息并汇总,大模型对检索到的信息进行筛选和优化,确保选中最相关和有用的信息。 生成(Generation):如同图书馆员把汇总信息组织成连贯、易懂的回答,大模型将整合的信息生成自然流畅的回答。 综合解释:RAG 就像超级智能的图书馆员,先检索相关信息,再筛选优化,最后生成连贯回答。 优点: 成本效益:实现成本低于训练和维护大型专有模型。 灵活性:可利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 缺点:回答准确性不如专有模型的方案。 其他相关技术: DALLE 3:与 ChatGPT 结合,用户输入会话命令可获得匹配图像,改善了之前图像生成器的操作方式。 开放式有声读物集合:微软和麻省理工学院联手,使用文本转语音技术将 5000 本书转换为免费有声读物并在 Spotify 上提供。 AudioShake 的 AI 程序:可隔离预先录制音频的元素,分解成组成部分,解决老音乐音轨分离问题。 Ai Pin:磁性连接衣服成为 AI 助手,使用专有软件和 OpenAI 的 GPT,仅用声音就能完成多种操作。
2024-12-19
AI有哪些技术
AI 技术包括以下方面: 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 如果您想在 AI 领域深入学习,学习路径如下: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,在健身领域,以下是一些 AI 产品: Keep:中国最大的健身平台,为用户提供全面的健身解决方案,以帮助用户实现其健身目标。https://keep.com/ Fiture:沸彻魔镜由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练是专门针对健身的生成式人工智能,使用 800 多万条文本数据和 ChatGPT 实时提供指导。https://planfit.ai/
2024-12-19
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
AI技术学习
以下是关于 AI 技术学习的相关内容: 一、AI 的技术历史和发展方向以及目前最前沿的技术点 如果您偏向技术研究方向,需要学习以下内容: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,需要掌握以下知识: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 二、新手学习 AI 的方法 1. 了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 三、中学生学习 AI 的建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-19
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
技术服务 大模型 研究报告
以下是为您提供的关于技术服务大模型研究报告的相关内容: 1. 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA 来源:质朴发言 发文时间:2024.01.22 内容:近期生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,优化了从视觉输入到语言输出的转换过程。报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。报告包括视觉分析技术、图像语言模型、视频语言模型、LLM 多模态 Agent、应用场景、未来发展方向、References 和附录等内容。应用场景包括多模态内容理解与处理、智能交互与自动化、具身智能、未来发展趋势(2024?)、视频生成模型 mapping 等。未来发展方向包括技术路径利用预训练 LLM 进行指令调整,应用场景赋予机器理解多模态的能力。 2. 《小 A技术开发/大模型 知识库文章索引》 作者: 文章: 《Perplexity 指标究竟是什么?》:作者从自己实际入坑的经验出发,尝试总结梳理出新手友好的 transformer 入坑指南。计划从算法 1:NLP 中的 transformer 网络结构、算法 2:CV 中的 transformer 网络结构、算法 3:多模态下的 transformer 网络结构、训练:transformer 的分布式训练、部署:transformer 的 tvm 量化与推理五个方面对 transformer 进行介绍。 《初探 LLM 基座模型》:主要介绍 LLM 基座模型里常见的 3 种 transformer 架构,encoderonly,encoderdecoder 和 decoderonly。 《ChatBot 是怎么炼成的?》:介绍了 LLM 基座大模型下游应用 ChatBot 的研发过程,在介绍 ChatBot 之前,先介绍了 LLM 在辅助编程方面的应用,包括 Codex 和 AlphaCode 两个奠基性工作。 3. 2024 年 9 月 26 日的相关报告 中国信通院和阿里云计算:《》,探讨了大模型技术的发展、面临的安全挑战以及在安全领域的应用潜力。 其它报告: 科大讯飞:《》 智能小巨人科技:《》 电子发烧友:《》 您可以根据具体需求,进一步查阅相关报告获取更详细的信息。
2024-12-19
我的英文水平是CET4,想要在一年内达到雅思7分。请以一位专业的英文老师角度给与建议。请将建议以简洁的表达以及每日计划的形式体现出来
对于您想要在一年内从 CET4 水平提升到雅思 7 分的目标,以下是一些简洁的建议和每日计划: 建议: 1. 扩充词汇量:雅思对词汇的要求较高,建议每天背诵一定量的雅思核心词汇。 2. 提升听力水平:多听雅思真题听力,尝试精听和泛听结合。 3. 加强阅读训练:每天进行雅思阅读练习,提高阅读速度和理解能力。 4. 注重写作练习:定期写作并请专业老师批改,学习优秀范文的结构和思路。 5. 口语练习:找语伴或参加英语角,多说多练,纠正发音和语法错误。 每日计划: 早上: 背诵 30 个雅思词汇。 听 30 分钟雅思听力真题,并做笔记。 中午: 利用午休时间阅读一篇雅思阅读文章。 晚上: 写一篇雅思作文,并对照范文进行修改。 进行 30 分钟的口语练习,可以通过模仿、对话等方式。 周末: 做一套完整的雅思模拟试题,包括听力、阅读、写作和口语。 总结本周的学习情况,找出薄弱环节,加强练习。 需要注意的是,学习计划要根据个人实际情况进行调整,保持坚持和耐心,祝您成功!
2024-12-17
Ai短视频比赛主题“什么样的时刻会首先出现在你的脑海中”,请以此主题提出几条优质的创作灵感建议,Ai生成视频要求不长于10秒,请用简单易懂的方式讲一下
以下是关于“什么样的时刻会首先出现在你的脑海中”这一 AI 短视频比赛主题的创作灵感建议: 1. 可以是烟花绽放的那一刻,绚丽多彩照亮夜空。 2. 是宠物与主人重逢相拥的那一刻,充满温馨与感动。 3. 是运动员冲过终点线的那一刻,展现胜利的喜悦。 4. 是孩子第一次学会走路的那一刻,充满成长的惊喜。 5. 是情侣在雨中亲吻的那一刻,浪漫而甜蜜。 比赛相关要求: 1. 主题:以“The Moment”为主题进行创作。 2. 数量限制:每人不限视频数量。 3. 提交时间:12 月 31 日 21:00 前。 4. 参赛文件:16:9 格式,不长于 10 秒,30FPS 以上,不含剪辑。 5. 作业方式:不限。 6. 工具要求:使用可灵 AI(https://kling.kuaishou.com/)。 7. 视频要求:带可灵水印。 8. 参与方式:在指定时间发布作品,可通过通往 AGI 之路首页表格、在野菩萨小红薯群或支持社区提交。 9. 奖项设置:金奖 5000 元+5800 灵感值;银奖 3000 元+2700(2200+500)灵感值;铜奖 2000 元+1000 灵感值;入围 500 元×40;人气奖 2500 元×4 以及其他意外散落的灵感值。 10. 注意事项:不建议出现鲜血、武器、鬼怪骷髅、知名人物、18X 等不符合国家政策的内容,可能导致参赛失败。不在规定时间内提交的自动失去参赛资格。评审由专业评审决定,提交次周发布结果。参与该挑战视作同意将作品的使用权授予本号及第三方用于社群运营、展览、展示、传播、营销等用途,主办方拥有最终解释权。在下面的投稿链接中上传作品。
2024-12-10
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
大模型技术对数据资产运营工作的提升点有哪些?
大模型技术对数据资产运营工作的提升点主要包括以下方面: 1. 更好地理解用户需求:通过利用对话历史,大模型能够在需要上下文理解或历史信息的场景中做出更准确和相关的响应,从而提升数据资产运营中与用户交互的质量。 2. 灵活的参数设置: 生成随机性:模型提供如“精确模式”和“平衡模式”等预设模式,可调整生成回复的创造性和随机度。 Top P:影响生成文本的多样性和连贯性,通过调整其值控制模型考虑的词汇范围。 最大回复长度:默认值可能较短导致回复不完整,将其调整到最大值可确保生成详尽完整的回复。 3. 异常处理能力:引入“异常忽略”特性,在遇到模型处理任务失败或超时时,工作流能继续执行而不中断,并通过预设应对措施,如记录错误日志、发送通知或启动备用流程,确保工作流的连续性和任务处理的可靠性。 4. 提升可信度:随着复杂模型的发展,其能力增强的同时也引发了对潜在滥用的担忧,包括生成假新闻、隐私泄露和伦理困境等,因此可信度问题成为研究焦点,需关注模型的安全性,抵抗滥用和“越狱”攻击的能力。 5. 在 ToB 业务中的应用: 模型能力:期望提升到对垂直行业通用知识有较专业掌握,对各类任务有强泛化能力。 成本:训练与部署推理成本降低到接近 2 年企业服务支出费用。 应用工程:服务尽量标准且可控,通过应用工程让模型与企业业务流快速顺畅打通,目前进展最快,有基于行业数据微调小体量模型、采用流程自动化工程框架结合工具与数据库对接等方向。
2024-10-16
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
小白如何学习ai
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型及原理。 生成式 AI 生成的内容叫 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习是基于有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据自主发现规律,经典任务如聚类;强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法,神经网络可用于多种学习方式。 生成式 AI 可生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
有没有带有文件夹功能的ai
目前,带有文件夹功能的 AI 仅在 Cursor Chat 中受支持。您还可以将 Cursor 中的整个文件夹作为上下文引用,@Folders 对于希望为 AI 提供大量上下文的长上下文聊天特别有用,相关链接为:https://docs.cursor.com/chat/overviewlongcontextchat 。 此外,能联网检索的 AI 也是存在的。例如,ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网;Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型;Bing Copilot 作为 AI 助手,旨在简化在线查询和浏览活动;还有如 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 Excel 方面,有以下几种增强数据处理和分析能力的 AI 工具和插件: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 以上内容由 AI 大模型生成,请仔细甄别。
2024-12-21
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-21
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21
那如果想通过AI赚钱,有什么建议
以下是通过 AI 赚钱的一些建议: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业应用 AI 技能,增加就业机会和职业发展可能性。 2. 利用 AI 工具进行创作,例如使用以下工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。 3. 进行 Agent 应用开发,熟悉业务,结合 AI 能力打磨产品,形成自己的护城河。 4. 通过 Key 商、写书、卖课、接项目、做镜像站等方式赚钱。 需要注意的是,是否能通过 AI 赚钱取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-12-21