Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

帮助普通大众了解生成式AI,以满足对AI的在使用过程中的一般需求

Answer

生成式 AI 是一种能够为用户生成内容的人工智能,生成的内容可以是多模式的,包括文本、图像、音频和视频。当给出提示或请求时,它可以帮助完成诸如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等各种任务。

生成式 AI 从大量现有内容中学习,这个学习过程称为训练,其结果是创造“基础模型”,如为 Bard 等聊天机器人提供支持的 LLM 或大型语言模型。基础模型可用于生成内容并解决一般问题,还可以使用所在领域的新数据集进一步训练以解决特定问题,从而创建一个新模型。Google Cloud 提供了如 Vertex AI 等多种易于使用的工具,帮助在具有或不具有 AI 和机器学习背景的项目中使用生成式 AI。

在技术原理方面,生成式 AI 生成的内容叫做 AIGC。相关技术名词包括:

  1. AI 即人工智能。
  2. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。
    • 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。
    • 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。
  3. 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。
  4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
  5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。

2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。

Content generated by AI large model, please carefully verify (powered by aily)

References

9. 生成式 AI Studio 简介

[title]9.生成式AI Studio简介[heading2]课程字幕00:00欢迎来到Generative AI Studio课程简介。在本视频中,您将了解什么是Generative AI Studio并描述其使用选项。您还可以自己演示Generative AI Studio的语言工具。00:14什么是生成式人工智能?它是一种为您生成内容的人工智能。什么样的内容?那么,生成的内容可以是多模式的,包括文本、图像、音频和视频。00:28当给出提示或请求时,Generative AI可以帮助您完成各种任务,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人。00:42这些只是几个例子!人工智能如何产生新内容?它从大量现有内容中学习。这包括文本、音频和视频。从现有内容中学习的过程称为训练,其结果是创造00:57的“基础模型”。为Bard等聊天机器人提供支持的LLM或大型语言模型是基础模型的典型示例。[动画-向左滑动图形以过渡到下一张幻灯片]基础模型01:07然后可用于生成内容并解决一般问题,例如内容提取和文档摘要。它还可以使用您所在领域的新数据集进一步训练以解决特定问题,01:19例如财务模型生成和医疗保健咨询。这导致创建了一个新模型,该模型是根据您的特定需求量身定制的。您如何使用基础模型为您的应用程序提供动力,以及您如何进一步01:32训练或调整基础模型来解决您特定领域的问题?Google Cloud提供了多种易于使用的工具,可帮助您在具有或不具有AI和机器学习背景的项目中使用生成式AI。01:45一种这样的工具是Vertex AI。Vertex AI是Google Cloud上的端到端机器学习开发平台,可帮助您构建、部署和管理机器学习模型。使用Vertex AI,如果您是应用程序开发人员或数据科学家并且想要构建应用程序,

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
有哪些优秀的AI copilot?
以下是一些优秀的 AI copilot: 1. 对于编程辅助方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 在 Agent 构建平台方面: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作等,并能部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 3. 此外,还有一些新的 AI 产品和网站,如: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于解释科学文献中的文本、数字和表格,输出内容更精确。链接:https://typeset.io/ AIPRM for ChatGPT:SEO Prompt 模板插件,支持 ChatGPT 和 Midjourney 等。链接:https://www.aiprm.com/ Teamsmart:有趣的文档助手,根据不同职业/技能提供不同能力点的机器人。链接:https://www.teamsmart.ai/ Boring Report:应对标题党的神器,去除文章夸张表述,保留客观事实。
2025-01-18
自学AI绘画该从哪里开始?
自学 AI 绘画可以参考以下步骤开始: 1. 了解相关硬件:如购买适合的显卡和显示器,为后续的学习和实践做好准备。 2. 获取学习资源:可以从他人分享处获取 AI 绘画的安装包和教学视频。 3. 系统学习教程:全面学习相关软件(如 SD)的教程。 4. 实践炼丹:尝试不同类型的图像生成,如人脸、画风、风景、景观、建筑等。 5. 探索变现途径:与小伙伴探讨如何将 AI 绘画变现,积累相关经验。 6. 加入社群学习:例如加入 Prompt battle 社群,学习 Midjourney 等新的工具和技巧。 7. 掌握关键词技巧:了解关键词的公式,包括主题、环境、气氛、灯光、色彩、构图、风格参考等方面,并通过参考喜欢的艺术家、灯光、颜色等风格来优化关键词。
2025-01-18
想要从事ai产品经理,需要具备哪些技能
从事 AI 产品经理需要具备以下技能: 1. 入门级: 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 会使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,可根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉传统互联网偏功能实现的产品经理和偏商业运营的产品经理的工作,秉持产品运营不分家的理念。 3. 落地应用级:有一些成功落地应用的案例,如产生商业化价值。 4. 通用技能: 懂得技术框架,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。 关注场景、痛点、价值。 理解产品核心技术,了解基本的机器学习算法原理,有助于做出更合理的产品决策。 掌握一定的算法知识,与技术团队有效沟通,减少信息不对称带来的误解。 能够在产品规划阶段评估某些功能的技术可行性。 了解算法前沿,把握产品发展方向。 提升数据分析能力,很多 AI 算法都涉及到数据处理和分析。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。
2025-01-18
超级ai 助手搭建
以下是关于超级 AI 助手搭建的相关内容: 微信超级 AI 知识助手教学(下)2024 年 12 月 11 日: 共学四节课要点回顾及相关文档查看方式:共学有四节课,知识助手教学的上级和知识注入教学的下级是关键部分,仅看这两个就能完成助手搭建。若想优化工作流及功能,看两场分享即可。另外还介绍了查看文档的网址,若不知网址,输入特定字符进入网页点击 banner 可查看文档。 张梦飞介绍课程相关内容:4 节课的内容、直播回放及课程文档可查看。第一节课会邀约报名,报名送 6000 万 token 和 1000 次生成视频或图片机会。未注册的可注册领取。第一节课作业为搭建工作流,提交作业有两个福利,包括质补平台资源和 autoglm 内测资格,晚点会放直播回放。 GM4 Flash 和 GM4V 杠 Flash 模型永久免费使用。 DIN:全程白嫖拥有一个 AI 大模型的微信助手: 搭建 OneAPI,这东西是为了汇聚整合多种大模型接口,方便后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。 搭建 FastGpt,这东西就是个知识库问答系统,把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答问题。如果不想接到微信去,自己用用,其实到这里搭建完就 OK 了,它也有问答界面。 搭建 chatgptonwechat,接入微信,配置 FastGpt 把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程。 智谱 BigModel 共学营第二期:把你的微信变成超级 AI 助理: 本期共学应用:人人可打造的微信助手。 课程教程: 第一课:创建助手工作流。 教程文档: 文章总结功能:使用到了代码模块、分支判断模块、网页解析插件。 文件总结功能:使用到自动 Prompt。 网页总结功能:使用到了网页读取插件。 生图、生成视频:使用到了 Agent 功能,意图调用。 文字版日报生成:使用到联网插件。 工作流本身不复杂,难易度适中,0 基础也能跟着完成。 模版:。 版本的创建和发布。发布后,可以分享链接给他人使用。(注意:别人使用会消耗你的 Token 额度) 保存智能体 ID 和申请 API key。
2025-01-18
有哪些AI视频剪辑工具
以下是一些常见的 AI 视频剪辑工具: Morph Studio:https://app.morphstudio.com/ ,还在内测。 Heygen:https://www.heygen.com/ ,数字人/对口型。 Kaiber:https://kaiber.ai/ 。 Moonvalley:https://moonvalley.ai/ 。 Mootion:https://discord.gg/AapmuVJqxx ,3d 人物动作转视频。 美图旗下:https://www.miraclevision.com/ 。 Neverends:https://neverends.life/create ,操作傻瓜。 SD:Animatediff SVD deforum ,自己部署。 Leiapix:https://www.leiapix.com/ ,可以把一张照片转动态。 Krea:https://www.krea.ai/ 。 Opusclip:https://www.opus.pro/ ,利用长视频剪成短视频。 Raskai:https://zh.rask.ai/ ,短视频素材直接翻译至多语种。 invideoAI:https://invideo.io/make/aivideogenerator/ ,输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频。 descript:https://www.descript.com/?ref=feizhuke.com 。 veed.io:https://www.veed.io/ ,自动翻译自动字幕。 clipchamp:https://app.clipchamp.com/ 。 typeframes:https://www.revid.ai/?ref=aibot.cn 。 此外,剪映在视频剪辑方面有很多人性化设计和简单的音效库/小特效,但无法协同工作和导出工程文件。剪辑流程通常包括视频粗剪、视频定剪、音效/音乐、特效、包装(如字幕)等步骤。 还有一些相关的教程: 以下几个工具也值得关注: Opusclip:利用长视频剪成短视频。 Raskai:短视频素材直接翻译至多语种。 invideoAI:输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频。 descript:屏幕/播客录制>PPT 方式做视频。 veed.io:自动翻译自动字幕。 clipchamp:微软的 AI 版剪映。 typeframes:类似 invideoAI,内容呈现文本主体比重更多。 google vids:一口大饼。
2025-01-18
现在页面UI生成有好用的AI辅助思路么
以下是关于页面 UI 生成的一些好用的 AI 辅助思路: 1. 使用 Midjourney 生成 UI 界面:如果想指定生成某个页面(如首页、登录页等),只需添加一段页面指令描述,例如“landing page”“Profile Page”等。通过一系列操作,会发现 Midjourney 产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意。但目前要直接用于开发仍有距离。 2. 推荐的网页原型图生成工具: 即时设计:https://js.design/ ,是可在线使用的“专业 UI 设计工具”,更注重云端文件管理、团队协作等。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 Wix:https://wix.com/ ,用户友好的 AI 工具,无需编码知识即可创建和自定义网站,提供多种模板和设计选择。 Dora:https://www.dora.run/ ,使用 Dora AI 可通过一个 prompt 借助 AI 3D 动画生成强大网站。 3. 案例教程:在开发游戏时,让 AI 生成羊、狼、锤子、栅栏、胜利图片、失败图片等元素,其中部分元素生成较顺利,部分需多次尝试。生成的 HTML 代码简洁,CSS 结构不错但部分定位模式需调整。个人感觉 AI 生成的东西不能完全信任,仍需人工调整,学习和请教专家也是必要的。
2025-01-18
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
生成式AI
生成式 AI 是一种能够生成新内容的人工智能技术,其内容可以是多模态的,包括文本、图像、音频、视频等。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,它和 AIGC 有所不同。AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。 ChatGPT 是 OpenAI 推出的,早期是一种模型,目前逐渐演变成一种可以兼容多种 GPT 模型的聊天应用(服务)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段和应用阶段。训练阶段通过从大量现有内容中学习生成基础模型,应用阶段基础模型可用于生成内容和解决一般性问题,也可使用特定领域新数据集进一步训练以解决特定问题。 在工具方面,如 Google Cloud 的 Vertex AI 是端到端机器学习开发平台,Generative AI Studio 允许快速制作原型和自定义生成式 AI 模型,Model Garden 可发现和交互基础及第三方开源模型。 以 Midjourney 为代表的工具在图形领域,可根据用户提供的文本描述生成高度相关和创造性的图像,这种通过文本命令获得图像的方式叫 Prompting,是全新形态的人机交互。其背后的原理涉及数据、映射和扩散三个概念。首先是数据,包括获取各种图像存档和创建特定数据集以获得足够基础来特征化物体、风格或概念。其次是映射,AI 使用算法识别和提取图片关键视觉特征。最后是扩散,AI 能通过创造性扩散过程探索和创造新的视觉表达形式。
2025-01-02
什么是生成式ai?
生成式 AI 是一种人工智能技术,能够生成新的、未曾存在的内容,这些内容可以是多模态的,包括文本(例如文章、报告、诗歌等)、图像(例如绘画、设计图、合成照片等)、音频(例如音乐、语音、环境声音等)、视频(例如电影剪辑、教程、仿真等)。 生成式 AI 可以应用于广泛的场景,例如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。 其工作方式包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容(文本、音频、视频等)中学习进行训练,得到一个“基础模型”。在应用阶段,基础模型可用于生成内容并解决一般性问题,还可使用特定领域的新数据集进一步训练以解决特定问题,从而得到一个量身定制的新模型。 AIGC 又称为生成式 AI,意为人工智能生成内容,例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 Gen AI/Generative AI 是“生成式人工智能”的正式称呼,它是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。
2025-01-02
欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟人工智能法案对我国在生成式人工智能方面立法具有以下启示: 1. 立法理念方面:我国与欧盟在人工智能立法上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现,欧盟法案对我国立法工作具有重要参考意义。 2. 特殊领域监管方面: 算法推荐、深度合成、生成式人工智能是我国规制人工智能的具体领域。欧盟法案对这些领域的某些产品或服务有特殊回应,一定程度上印证了我国特别监管的必要性。 对于深度合成,欧盟法案强化了系统使用主体信息透明度的要求,与我国相关规定有一致性,但我国规定更全面,不过存在规定交叉重复适用的问题。 对于生成式人工智能,欧盟法案将其视为“基础模型”的一种类型,并规定了额外义务,我国相关规定在义务上更为全面。 3. 监管体系方面: 中国针对不同涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体。 欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估划分风险层级,并匹配不同责任措施和差异化监管,进一步界定了各类主体的义务。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
请告诉我3个大众使用评价最好的ai搜索引擎
以下是 3 个大众使用评价较好的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式的搜索引擎,允许用户用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案,用户参与度高。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,并支持增强模式和智能排序。
2025-01-16
如何借助AI工具做自媒体向社会大众传达正确的价值观,并实现盈利?
要借助 AI 工具做自媒体向社会大众传达正确的价值观并实现盈利,可以考虑以下几个方面: 首先,明确自身的价值观定位和目标受众。确定您想要传达的核心价值观,以及这些价值观与哪些社会群体最为相关。 其次,利用 AI 工具进行内容创作和优化。例如,使用自然语言处理工具来生成吸引人的文章标题和文案,或者借助图像识别和生成工具制作有吸引力的配图和视频。 再者,运用 AI 进行数据分析,了解受众的喜好和行为模式,以便精准推送内容,提高传播效果。 在盈利方面,可以通过以下几种方式: 1. 广告投放:当您的自媒体拥有一定的流量和关注度后,可以吸引相关品牌进行广告投放。 2. 付费会员或订阅:为用户提供独家、高质量的内容,吸引他们成为付费会员或订阅者。 3. 电商合作:推荐与您价值观相符的产品,并通过合作获得佣金。 总之,借助 AI 工具能够提高效率和质量,但关键在于始终坚守正确的价值观,以优质、有深度的内容吸引和留住受众,从而实现盈利目标。
2024-08-24
普通人如何熟练的使用Ai
普通人要熟练使用 AI ,可以参考以下几点: 1. 提供背景信息:在使用 AI 时,尽可能为其提供详细的背景信息,以确保输出更准确和有用。 2. 让 AI 自我反思:促使 AI 对每次输出的内容进行再次思考,提高输出质量。 3. 尝试使用:对于超出自己理解范围的 AI ,最简单的方法是亲自试一试,百闻不如一练。 4. 了解 AI 能力边界:虽然目前难以明确类似 GPT4 等模型的具体能力边界,但要心中有数,避免在边界外的任务上过度依赖。 5. 接受培训:使用 AI 时接受一定的培训,能提高任务完成的效率和质量。 6. 注意协作方式:可以采用“半人马”模式,即人与 AI 紧密结合但各司其职,人类主导流程并合理调配资源;也可以向“机械人”模式发展,实现人与 AI 的高度融合,更精细化地协作和创作。 此外,尽可能简单地试用 AI ,是让普通人在 AI 发展中更快受益的好方式。
2025-01-15
AI对于普通个体户的作用
AI 对于普通个体户具有多方面的作用,主要包括以下几点: 1. 自媒体与内容创作:个体可以成为自媒体博主,利用 AI 工具生成优质内容,提升创作效率和质量。 2. 商业应用: 应用于实体印刷,如在 T 恤、杯子等实物上进行个性化设计。 进行电商商品的设计和优化。 开展 AI 服装预售业务。 承接 AI 视频制作订单。 3. 设计与创意工作: 提升设计质量和效率。 开发 AI 绘画相关应用。 利用 AI 进行摄影创作。 承接设计接单业务。 4. 个性化服务: 定制萌娃头像。 为客户提供 AI 相关的培训服务。 此外,随着 AI 技术的不断发展和应用普及,普通个体户能够凭借 AI 工具释放更多创造力,重新定义传统职业边界,推动行业创新和社会生产力的提升。但要充分利用好 AI ,需要个体户深入了解自身需求,掌握相关技能,并结合实际场景进行创新应用。
2025-01-15
AI对于普通人的具体意义是什么?
AI 对于普通人具有多方面的重要意义: 1. 工作效率提升:能处理重复性和繁琐的日常任务,例如编写程序或脚本。 2. 创新解决方案:开启无限可能性,从自动化日常任务到创造创新性成果。 3. 融入工作生活:一定程度上缓解工作中的交互问题,融入日常工作场景。 4. 减轻劳动负担:将人从重复性劳动中抽离,节省时间和精力。 5. 个性化服务:如为小朋友制作游戏或智能硬件,创造独特体验。 6. 医疗领域:在初诊、获取医疗数据、降本等方面发挥作用,提供“人体健康模型”的可能性。 同时,AI 应用是技术驱动的,目前产品能做的事情还较有限。在一些领域,如医疗,短期内仍存在一些问题,如医生使用 AI 助手动力不足等。但从长远来看,AI 有着广阔的发展空间和想象空间。
2025-01-15
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
普通人如何学习利用ai,提高工作学习效率,怎么学习及学习顺序是怎样的
以下是为普通人提供的学习利用 AI 以提高工作学习效率的方法及学习顺序: 一、了解 AI 基本概念 首先,建议阅读相关资料,如「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么、其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的一系列课程。特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。可根据自身兴趣选择特定模块深入,比如一定要掌握提示词的技巧,其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出自己的作品,在知识库中也有很多大家实践后的作品和文章分享,欢迎自己实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。通过对话获得对 AI 在实际应用中表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的学习模式,即输入→模仿→自发创造。同时注意,学习资源大多是免费开源的,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。学习时间可根据自身情况灵活安排,不必有压力,能学多少算多少。
2025-01-12
普通人怎么用AI赚钱
普通人可以通过以下方式利用 AI 赚钱: 1. 艺术创作:生成式 AI 使内容创作成为可能,从肖像画开始,涵盖各种媒介。做得好时,可通过创作内容实现盈利。但要注意,目前一些 AI 工具可能存在幻觉或处理请求时间长的问题,对于试图通过内容盈利的高级用户,许多公司会推出如 ChatGPT 那样的“专业版”套餐以提供更高质量服务。 2. 数字克隆体:成为数字克隆体的本体,基于克隆体的费率和被使用时长与平台结算。越多人使用,收益越多。用户还可通过订阅平台使用多个克隆体,月费或额外小时费可与获取的收益相抵扣。这样,每个人都能在体系中既是消费者又是生产者,只要数字克隆体受欢迎,就能实现“数字克隆体自由”。
2025-01-07