直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何借助AI工具做自媒体向社会大众传达正确的价值观,并实现盈利?

回答

要借助 AI 工具做自媒体向社会大众传达正确的价值观并实现盈利,可以考虑以下几个方面:

首先,明确自身的价值观定位和目标受众。确定您想要传达的核心价值观,以及这些价值观与哪些社会群体最为相关。

其次,利用 AI 工具进行内容创作和优化。例如,使用自然语言处理工具来生成吸引人的文章标题和文案,或者借助图像识别和生成工具制作有吸引力的配图和视频。

再者,运用 AI 进行数据分析,了解受众的喜好和行为模式,以便精准推送内容,提高传播效果。

在盈利方面,可以通过以下几种方式:

  1. 广告投放:当您的自媒体拥有一定的流量和关注度后,可以吸引相关品牌进行广告投放。
  2. 付费会员或订阅:为用户提供独家、高质量的内容,吸引他们成为付费会员或订阅者。
  3. 电商合作:推荐与您价值观相符的产品,并通过合作获得佣金。

总之,借助 AI 工具能够提高效率和质量,但关键在于始终坚守正确的价值观,以优质、有深度的内容吸引和留住受众,从而实现盈利目标。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
有没有能根据哼唱,出伴奏的AI
以下是一些能根据哼唱出伴奏的 AI 相关信息: 在音乐创作中,如果只有词和一小段自己哼唱的旋律,可以上传这段哼唱的旋律,让 AI 扩展出自己喜欢的风格,然后将这段音轨作为动机音轨继续创作。 对于已有简单录音小样,可以利用 REMIX 优化音质与编曲结构,并利用 AI 尝试不同曲风版本,找到最喜欢的风格,然后制作成核心音轨,进而完成全曲创作。 同时,在使用 AI 进行音乐相关处理时也存在一些问题和需要注意的地方: 检查乐谱时,主旋律基本能还原,但可能会把噪声识别成音符形成错误信息,需要具备乐理知识去修复。 重奏输出方面,修谱和重奏软件可以使用 中的 Muse Score,它支持多种常用音频编辑格式的导出和高清输出。 目前存在一些待解决的问题,如延长音部分可能会抢节奏,爵士乐中的临时升降号可能导致判断混乱,高音和低音的符点会相互影响,基础修谱可能导致旋律单调等。 在将 Midi 导出到 MP3 虚拟演奏文件时,可以直接导总谱或分轨导出,后期若想输出到某些音乐平台可能需要转码。还可以使用相关软件修改音色进行渲染。把文件丢给 AI 做二次创作时,可以根据具体情况选择完整小节或在中间掐断。
2024-12-20
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
AI的工具类应用有哪些?
以下是一些常见的 AI 工具类应用: 1. AI 菜谱口味调整工具:如“下厨房”的口味调整功能,使用自然语言处理和数据分析技术,根据用户反馈调整菜谱口味,市场规模达数亿美元。 2. AI 语言学习纠错平台:像“英语流利说”的纠错功能,运用自然语言处理和机器学习技术,帮助语言学习者纠正错误,市场规模达数十亿美元。 3. AI 电影剧情分析系统:例如“豆瓣电影”的剧情分析工具,通过数据分析和自然语言处理技术,为用户提供深度解读,市场规模达数亿美元。 4. AI 办公文件分类系统:如“腾讯文档”的分类功能,借助数据分析和机器学习技术,自动分类办公文件,方便管理,市场规模达数亿美元。 5. AI 美容护肤方案定制平台:“美丽修行”的定制方案功能,利用图像识别和数据分析技术,根据用户肤质定制护肤方案,市场规模达数亿美元。 6. AI 菜谱生成平台:“豆果美食 APP”,采用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱,市场规模达数亿美元。 7. AI 语言学习助手:“沪江开心词场”,通过自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案,市场规模达数十亿美元。 8. AI 电影推荐系统:“爱奇艺”的智能推荐功能,运用数据分析和机器学习技术,根据用户喜好推荐电影,市场规模达数亿美元。 9. AI 办公自动化工具:“WPS Office”,借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 10. AI 游戏道具推荐系统:在一些游戏中的推荐功能,使用数据分析和机器学习技术,根据玩家需求推荐游戏道具,市场规模达数亿美元。 11. AI 天气预报分时服务:“彩云天气”的分时预报,利用数据分析和机器学习技术,提供精准的分时天气预报,市场规模达数亿美元。 12. AI 医疗病历分析平台:“医渡云”的病历分析系统,通过数据分析和自然语言处理技术,分析医疗病历,辅助诊断,市场规模达数十亿美元。 13. AI 会议发言总结工具:“讯飞听见”的会议总结功能,运用自然语言处理和机器学习技术,自动总结会议发言内容,市场规模达数亿美元。 14. AI 书法作品临摹辅助工具:书法临摹软件,借助图像识别和数据分析技术,帮助书法爱好者进行临摹,市场规模达数亿美元。
2024-12-20
如何用AI工具写简历?
以下是使用 AI 工具写简历的方法和相关工具推荐: 1. 一些可用于写简历的 AI 工具: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型,能为简历摘要、工作经验和教育等部分编写内容,并保持一致语调。 Rezi:受到超 200 万用户信任的领先 AI 简历构建平台,能自动化创建简历的各个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费简历模板,以及 AI 生成的总结、技能、成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,可查看:https://www.waytoagi.com/category/79 2. 用于写作的通用 AI 工具: 最佳免费选项: 付费选项:带有插件的4.0/ChatGPT 目前,GPT4 是功能最强的人工智能写作工具,可在 Bing(选择“创新模式”)上免费访问,或通过购买 ChatGPT 的$20/月订阅来访问。Claude 紧随其后,也提供有限免费选项。 这些工具都能帮助您快速、高效地创建出专业的简历,您可以根据自身需要选择最适合的工具。但使用时请注意仔细甄别内容。
2024-12-20
请问AI怎么用于自我认知(性格、能力、价值观)
AI在自我认知(性格、能力、价值观)方面的应用已经取得了一定进展,主要通过以下几种方式实现: 1. 个性测试与分析 AI可以通过分析用户在特定测试中的反应和行为,帮助评估个性特征。 示例: 16型人格测试(MBTI):AI系统可以分析用户在MBTI测试中的回答,生成详细的个性报告,并根据报告提供个性化的建议。 大五人格测试(Big Five):通过机器学习算法,AI可以对用户在大五人格测试中的表现进行分析,并评估其开放性、尽责性、外向性、宜人性和神经质等维度。 2. 行为数据分析 通过分析用户在社交媒体、工作平台等环境中的行为数据,AI可以推断出个性、能力和价值观等特征。 示例: 社交媒体分析:AI可以分析用户在社交媒体上的发布内容、点赞和评论行为,推断其性格特征、兴趣爱好和价值观。 工作行为分析:在工作环境中,AI可以通过分析邮件、任务完成情况、会议记录等数据,评估用户的工作能力、沟通风格和职业倾向。 3. 情感与语音分析 通过情感分析和语音识别技术,AI可以分析用户的情感状态和沟通风格,帮助了解其内在特质。 示例: 情感分析:AI可以分析用户在文本、语音或视频中的情感表达,评估其情感稳定性、情绪倾向和压力水平。 语音识别:通过分析用户的语音语调、语速和语言使用习惯,AI可以推断其自信心、外向性和沟通能力。 4. 游戏与模拟 通过游戏和虚拟环境,AI可以观察用户的行为选择和决策模式,评估其性格特征和价值观。 示例: 游戏化评估:AI可以设计特定的游戏场景,观察用户在不同情境下的决策和行为,评估其风险偏好、合作精神和道德观念。 虚拟现实(VR)模拟:在VR环境中,AI可以模拟各种真实生活情境,观察用户的反应和选择,从而评估其个性和价值观。 5. 个性化推荐系统 AI可以根据用户的历史行为和偏好,提供个性化的内容推荐,进一步了解其兴趣和价值观。 示例: 内容推荐:通过分析用户的阅读、观看和购物历史,AI可以提供个性化的内容推荐,如文章、视频、商品等,帮助了解用户的兴趣和价值观。 职业推荐:AI可以根据用户的能力、兴趣和职业倾向,推荐适合的职业发展路径和培训课程,帮助用户了解自己的职业能力和潜力。 具体平台和工具 1. . Crystal Knows 功能:分析社交媒体和职业平台上的数据,提供个性化的性格分析和沟通建议。 应用:适用于团队协作、销售和招聘等领域,通过理解他人性格提高沟通效果。 2. Pymetrics 功能:通过神经科学游戏评估用户的认知和情感特征,帮助匹配适合的职业和角色。 应用:广泛应用于招聘和职业发展,帮助企业找到合适的候选人。 3. Receptiviti 功能:使用情感和心理分析技术,通过文本分析评估用户的心理特征和情绪状态。 应用:适用于员工满意度评估、客户情感分析和心理健康监测。 总结 AI在自我认知领域的应用,通过多种技术手段,如个性测试、行为数据分析、情感与语音分析、游戏与模拟、个性化推荐系统等,帮助用户更好地了解自己的性格、能力和价值观。这些技术不仅可以提高个人的自我认知水平,还可以在招聘、职业发展、心理健康等方面提供重要支持。随着AI技术的不断进步,其在自我认知领域的应用将会更加广泛和深入。
2024-05-22
帮助普通大众了解生成式AI,以满足对AI的在使用过程中的一般需求
生成式 AI 是一种能够为用户生成内容的人工智能,生成的内容可以是多模式的,包括文本、图像、音频和视频。当给出提示或请求时,它可以帮助完成诸如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助和呼叫中心机器人等各种任务。 生成式 AI 从大量现有内容中学习,这个学习过程称为训练,其结果是创造“基础模型”,如为 Bard 等聊天机器人提供支持的 LLM 或大型语言模型。基础模型可用于生成内容并解决一般问题,还可以使用所在领域的新数据集进一步训练以解决特定问题,从而创建一个新模型。Google Cloud 提供了如 Vertex AI 等多种易于使用的工具,帮助在具有或不具有 AI 和机器学习背景的项目中使用生成式 AI。 在技术原理方面,生成式 AI 生成的内容叫做 AIGC。相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-10-09