Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

帮我找知识库里和「评估」相关的内容或文章

Answer

以下是知识库里与“评估”相关的内容:

提示工程

  • 评估程序在优化系统设计时很有用。好的评估程序需要具备以下特点:
    • 具有代表性:能够代表真实世界的使用场景,或者至少包含多样化的测试用例。
    • 样本量充足:拥有足够的测试用例,以保证统计结果的可靠性。
    • 易于自动化:可以自动运行或重复执行。
    • 评估工作可以由计算机、人类或两者协作完成。计算机可以使用客观标准以及一些主观或模糊标准自动执行评估,其中模型输出由其他模型查询评估。OpenAI Evals是一个开源软件框架,提供了创建自动评估程序的工具。
    • 基于模型的评估在评估具有多种可能答案的问题时非常有用,模型可以根据预定义的标准对不同的答案进行评分,帮助我们选择最佳答案。可以用模型进行评估和需要人工评估之间的界限是模糊的,并且随着模型变得越来越强大而不断变化。

OpenAI 官方指南

  • 评估程序(或称为“Evals”)对于优化系统设计非常有用。良好的评估:
    • 代表现实世界的使用(或至少是多样化的)。
    • 包含许多测试用例以获得更大的统计能力。
    • 易于自动化或重复。
    • 输出的评估可以由计算机、人类或混合来完成。计算机可以使用客观标准以及一些主观或模糊标准来自动评估,其中模型输出由其他模型查询评估。OpenAI Evals是一个开源软件框架,提供用于创建自动评估的工具。
    • 当存在一系列可能被认为质量相同的输出时,基于模型的评估可能很有用。使用基于模型的评估可以实际评估的内容与需要人工评估的内容之间的界限是模糊的,并且随着模型变得更强大而不断变化。

Gemini 报告

  • 为了评估 Gemini 模型在政策领域和其他在影响评估中确定的关键风险领域中的表现,在模型开发的整个生命周期中开展了一系列评估。
    • 在训练和优化 Gemini 模型过程中,会进行开发评估以进行“hill-climbing”。这些评估是由 Gemini 团队设计的,或者是针对外部学术基准的评估。评估考虑诸如有用性(指令遵循和创造力)、安全性和事实性等问题。
    • 保证评估是为了治理和审查而进行的,通常在关键里程碑或培训运行结束时由模型开发团队之外的团队进行。保证评估按照模态进行标准化,数据集严格保密。只有高层次的见解被反馈到训练过程中,以协助缓解工作。保证评估包括对 Gemini 政策的测试,并包括对潜在生物危害、说服力和网络安全等危险能力的持续测试。
    • 外部评估由谷歌之外的合作伙伴进行,以发现盲点。外部团体对模型进行了一系列问题的压力测试,包括白宫承诺书中列出的领域,测试通过结构化评估和非结构化的红队测试进行。这些评估的设计是独立的,并且结果定期报告给 Google DeepMind 团队。
Content generated by AI large model, please carefully verify (powered by aily)

References

提示工程: 如何与大型语言模型高效沟通【OpenAI官网翻译】

[title]提示工程:如何与大型语言模型高效沟通【OpenAI官网翻译】[heading1]写在前面[heading2]策略:系统地测试更改有时很难分辨出更改——例如,新的指令或新的设计——是使你的系统变得更好还是更糟。查看几个示例可能会暗示哪个更好,但由于样本量小,很难区分真正的改进还是随机运气。也许更改在某些输入上有助于性能,但在其他输入上则损害性能。评估程序(或“评估”)在优化系统设计时很有用。好的评估程序需要具备以下特点:具有代表性:能够代表真实世界的使用场景,或者至少包含多样化的测试用例。样本量充足:拥有足够的测试用例,以保证统计结果的可靠性(参考下表)。易于自动化:可以自动运行或重复执行。|需要检测的差异|95%置信度所需的样本量|<br>|-|-|<br>|30%|~10|<br>|10%|~100|<br>|3%|~1,000|<br>|1%|~10,000|评估工作可以由计算机、人类或两者协作完成。计算机可以使用客观标准(例如,针对单一正确答案的问题)以及一些主观或模糊标准自动执行评估,其中模型输出由其他模型查询评估。[OpenAI Evals](https://github.com/openai/evals)是一个开源软件框架,提供了创建自动评估程序的工具。基于模型的评估在评估具有多种可能答案的问题时非常有用,例如开放性问题。模型可以根据预定义的标准对不同的答案进行评分,帮助我们选择最佳答案。可以用模型进行评估和需要人工评估之间的界限是模糊的,并且随着模型变得越来越强大而不断变化。我们鼓励你进行实验,找到最适合你的用例的评估方法。

目录:OpenAI 官方指南

[title]目录:OpenAI官方指南[heading1]二、战术[heading2]策略:系统地测试变化有时候,很难判断一个变化(例如,新的指令或新的设计)是否使你的系统变得更好或更差。看几个例子可能会暗示哪个更好,但如果样本量很小,很难区分真正的改进或是随机运气。也许这个改变在一些输入上有助于提高性能,但在其他输入上却降低了性能。评估程序(或称为"Evals")对于优化系统设计非常有用。良好的评估:代表现实世界的使用(或至少是多样化的)包含许多测试用例以获得更大的统计能力(有关指南,请参见下表)易于自动化或重复|要检测的差异|95%置信度所需的样本量|<br>|-|-|<br>|0.3|~10|<br>|0.1|~100|<br>|0.03|~1,000|<br>|0.01|~10,000|输出的评估可以由计算机、人类或混合来完成。计算机可以使用客观标准(例如,具有单一正确答案的问题)以及一些主观或模糊标准来自动评估,其中模型输出由其他模型查询评估。[OpenAI Evals](https://github.com/openai/evals)是一个开源软件框架,提供用于创建自动评估的工具。当存在一系列可能被认为质量相同的输出时(例如,对于答案很长的问题),基于模型的评估可能很有用。使用基于模型的评估可以实际评估的内容与需要人工评估的内容之间的界限是模糊的,并且随着模型变得更强大而不断变化。我们鼓励实验来找出基于模型的评估在你的用例中可以工作得多好。

Gemini report 中文翻译

为了评估Gemini模型在政策领域和其他在影响评估中确定的关键风险领域中的表现,我们在模型开发的整个生命周期中开展了一系列评估。在训练和优化Gemini模型过程中,会进行开发评估以进行“hill-climbing”。这些评估是由Gemini团队设计的,或者是针对外部学术基准的评估。评估考虑诸如有用性(指令遵循和创造力)、安全性和事实性等问题。请参阅第5.1.6节和下一节的mitigations的样本结果。保证评估是为了治理和审查而进行的,通常在关键里程碑或培训运行结束时由模型开发团队之外的团队进行。保证评估按照模态进行标准化,数据集严格保密。只有高层次的见解被反馈到训练过程中,以协助缓解工作。保证评估包括对Gemini政策的测试,并包括对潜在生物危害、说服力和网络安全等危险能力的持续测试(Shevlane等,2022年)以修订回应并在多个回应候选项之间进行选择。外部评估由谷歌之外的合作伙伴进行,以发现盲点。外部团体对我们的模型进行了一系列问题的压力测试,包括白宫承诺书中列出的领域,测试通过结构化评估和非结构化的红队测试进行。这些评估的设计是独立的,并且结果定期报告给Google DeepMind团队。

Others are asking
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
适合小白的AI知识库
以下是适合小白的 AI 知识库内容: 通识篇: 现有常见 AI 工具小白扫盲: 文章链接: 视频链接:(1 小时 32 分开始) 适用人群:对 AI 都没太多概念的纯纯小白 简要说明:给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量 AI 常见名词、缩写解释: 文章链接: 适用人群:对 AI 都没太多概念的纯纯小白 简要说明:给看不懂“黑话”和诸多缩写的小白,请善用这张表+多问 AI 对话工具(如豆包 or Kimi)结合食用 工具入门篇: (Prompt)现成好用的 Prompt: 文章链接: 适用人群:完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白 简要说明:想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀 prompt 案例,它们都有完整的结构。 (AI Agent)Agent 工具 小白的 Coze 之旅: 文章链接: 视频链接:Coze 之旅 1.0: 适用人群:完全没有编程基础,但对 AI 已有一点概念的小白 简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它 (AI Pic)现在主流的 AI 绘图工具网站: 文章链接: 适用人群:完全没接触过 AI 出图、只是听说过的小伙伴 简要说明:为纯粹的小白提供一个工具列表和扫盲 (AI Tools)数据工具 多维表格小白之旅: 文章链接: 视频链接: 适用人群:Excel 重度使用者、手动数据处理使用者、文件工作者 简要说明:用表格 + AI 进行信息整理、提效、打标签,满足 80%数据处理需求 (AI Code)编程工具 Cursor 的小白试用反馈: 文章链接: 适用人群:0 编程经验、觉得编程离我们很遥远的小白 简要说明:通过 AI 工具对编程祛魅,降低技术壁垒 (AI Music)音乐工具 Suno 的小白探索笔记: 文章链接: 适用人群:0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白 简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作
2025-01-20
从0到1搭建知识库
从 0 到 1 搭建知识库的方法如下: 【智能体】让 Coze 智能体机器人连上微信和微信群: 创建智能体: 知识库:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据。自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。知识库的飞书在线文档,其中每个问题和答案以分割,暂时不要问为什么。选择飞书文档、自定义的自定义,输入,然后就将飞书的文档内容以区分开来,这里可以点击编辑修改和删除。点击添加 Bot,添加好可以在调试区测试效果。 本地文档:本地 word 文件,注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容格式依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能够搜到。 使用 Dify 构建知识库: 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 【知识库】FastGPT + OneAPI + COW 带有知识库的机器人: 创建知识库应用: 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 进入后,点击应用并创建,选择 qwen 模型。 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 上传文件,等待处理,最后文本状态是“已就绪”。 回到刚刚创建的应用,关联上创建的知识库。 点击两个发布。之前第一个叫做保存。 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 并保存下来。 安装并接入 cow: 回到宝塔,打开【终端】。 依次粘贴并回车:cd/root 。 git clone https://github.com/zhayujie/chatgptonwechat ,注意一定要粘贴完整。 出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续一行一行,依次输入:cd chatgptonwechat/ ,pip install r requirements.txt 。 等待执行完成,继续粘贴:pip install r requirements optional.txt 。 上边的都执行完成后,到“文件”菜单中去执行,点击文件 找到 root,进入 root 文件夹,找到 chatgpt on wechat 文件夹,并进入。
2025-01-19
个人知识库搭建
个人知识库搭建主要包括以下内容: 1. RAG 技术: 利用大模型能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载(从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并转换为向量形式存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. GPT 相关: 搭建基于 GPT API 的定制化知识库涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 Embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。 3. 本地知识库进阶: 若要更灵活掌控知识库,可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 最后,“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系相关人员或加入免费知识星球(备注 AGI 知识库)。
2025-01-19
知识库的实验数据,AI能关联分析思考吗?
目前的 AI 技术在一定程度上能够对知识库中的实验数据进行关联分析和思考。AI 具备处理和分析大量数据的能力,通过运用机器学习和数据挖掘算法,可以发现数据中的模式、关系和趋势。然而,AI 的分析能力取决于数据的质量、特征工程的有效性以及所采用的算法和模型的适用性。在复杂和不确定的情况下,AI 的分析结果可能存在一定的局限性,需要人类的进一步审查和判断。
2025-01-18
如何准确调用知识库的内容?
要准确调用知识库的内容,可以从以下方面进行: 维护知识库内容: 为提升召回准确率,可删除、新增或修改知识库内容。 在知识库页面,能看到已创建的知识库及每个知识库内的单元数量和创建时间等信息。单击知识库或编辑图标,可进入知识库详情页面。在详情页可进行新增内容、删除内容、更新单元内的分段、开启引用等操作。若不开启引用,即便 Bot 中使用了所属的知识库,该单元内容也不会被召回。 使用知识库: 可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 关于让 AI+知识库回答更准确的示例: 以问答机器人为例,其配置包括 AI 模型、提示词、知识库。大语言模型如同拥有无穷智慧的人,提示词是设定其角色和专注技能,知识库则是工作手册。例如设定 AI 模型为阿里千问模型,提示词角色为“美嘉”,知识库为《爱情公寓》全季剧情,让“美嘉”拥有相关“记忆”。
2025-01-18
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
怎么评估提示词的效果?
评估提示词的效果可以从以下几个方面进行: 1. 模型的准确率:观察模型生成的回答与预期结果的匹配程度。 2. 流畅度:检查生成的文本在语言表达上是否通顺、自然。 3. 相关性:判断生成的内容与提示词所表达的意图和需求的关联程度。 提示词工程师在评估提示词效果时,通常会采取以下步骤和方法: 1. 设计提示:根据用户需求和模型能力,精心考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式,不断改进提示。 3. 实际测试:包括对基础提示词模板的测试,确保其能兼容国内外各种模型,并生成拟人化的提示词,然后将其应用于不同模型中评估实际应用效果和适应性。 此外,提示工程有几项核心原则: 1. 编写清晰的指令。 2. 将复杂任务分解为简单任务。 3. 给模型一定的时间空间思考。 4. 系统地测试性能变化。 要提高提示技巧,应多学习和实践。同时,可以参考大模型厂商的提示工程指南,以及 LangGPT 结构化提示词知识库中的相关资料,如:
2024-10-15
如何自动化 RAG bot 的测试评估工作流?
以下是一个关于自动化 RAG bot 测试评估工作流的参考方案: 首先,对于 RAG bot 的工作流,主要包括以下关键步骤: 1. 开始节点:接收用户选择的小说人物角色名称或向小说人物角色提问的问题。 2. 知识库节点:将输入的角色名称或问题作为查询,在知识库中检索该角色的性格特点、经典台词或相关的上下文信息。 3. 大模型节点:让大模型对检索到的信息进行筛选和处理,并以特定格式(如 JSON 格式)输出结果,或者根据问题和检索到的上下文信息生成答案。 4. 代码节点:对上游输入的数据进行规整和格式化输出。 5. Text2Image 节点:引用上一步输出的用于描述人物性格和特点的特征,作为提示生成人物的角色照。 6. 结束节点:输出人物台词、角色照或答案。 要实现自动化测试评估工作流,可以考虑以下几个方面: 1. 制定明确的测试用例:包括各种类型的输入,如不同的角色名称、问题类型和复杂程度等,以全面覆盖各种可能的情况。 2. 建立监控机制:实时监测工作流中各个节点的运行状态、数据传输和处理时间等关键指标。 3. 数据验证:在每个节点的输出端,验证数据的准确性、完整性和格式的正确性。 4. 性能评估:分析工作流的整体性能,如响应时间、资源利用率等,以优化工作流的效率。 5. 错误处理和恢复测试:模拟各种可能的错误情况,测试工作流的错误处理和恢复能力。 6. 定期回归测试:确保工作流在经过修改或优化后,仍然能够正常运行并满足预期。 通过以上的步骤和方法,可以有效地实现 RAG bot 测试评估工作流的自动化,提高其可靠性和性能。
2024-09-22
大模型评估
大模型评估是当前热门领域,以下是一些常见的评估方法和相关资源: 测试问题类型: 检索和归纳。 推理性。 有日期相关历史事件等。 专业测评网站: https://lmsys.org/blog/20230503arena/ (系统自带翻译不太友好,可点进去仔细阅读)。 中文语言理解测评基准:https://www.cluebenchmarks.com/index.html ,介绍:https://mp.weixin.qq.com/s/6CDnyvMsEXtmsJ9CEUn2Vw 。 斯坦福团队的 AlpacaEval:项目链接:https://github.com/tatsulab/alpaca_eval ,排行榜链接:https://tatsulab.github.io/alpaca_eval/ 。 FlagEval(天秤)大模型评测体系及开放平台:地址:https://github.com/FlagOpen/FlagEval ,简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。FlagEval(天秤)创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:地址:https://github.com/SJTULIT/ceval ,简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:地址:https://github.com/CLUEbenchmark/SuperCLUElyb ,简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 对比不同大语言模型性能的方法: 自定义任务:根据特定需求设计任务,以评估模型在特定领域的表现。 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 性能指标:使用包括准确率、召回率、F1 分数、BLEU 分数等在内的性能指标来量化比较。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-15
李飞飞关于aigent的文章
以下是李飞飞关于 AIgent 的相关文章: 《对话"AI 教母"李飞飞:我们究竟需要什么样的 AI Agent?如何正确把握这个风口》:李飞飞在访谈中探讨了 AI Agent 的发展及其未来。她强调 AI Agent 应作为工具和赋能者,而非主导者,确保人们的自主性。李飞飞回顾了 ImageNet 的创立背景,并提到正在推动的“空间智能”概念,旨在理解和融合物理与数字三维世界。她认为,未来这两者的界限将逐渐模糊,从而带来更大变革。 《[李飞飞:理解世界运作方式是 AI 的下一步,我们需要从大语言模型转向大世界模型》:李飞飞认为,人工智能的下一步应从大型语言模型转向大型模型,强调视觉智能在理解和与世界互动中的重要性。计算机需要具备空间智能,能够建模、推理并在三维空间中互动。通过最新的 AI 技术,机器可以根据文本提示完成任务,并在虚拟环境中导航。未来,这种以人为中心的人工智能将在家庭护理、医疗支持等领域发挥重要作用。
2025-01-20
为文章寻找准确的参考文献,哪个AI最好用
在为文章寻找准确的参考文献方面,以下是一些可用的 AI 工具和途径: 1. 对于寻找图片素材,Perplexity.AI 的 Search Images 功能较为实用。在挑选图片时,要避免带有水印、画质不清晰或分辨率低的图片。图片的出处一般在 twitter 和官方网站,这两个平台是获取官方信息和高质量图片的良好途径。 2. 在文献管理和搜索方面,Zotero 能结合 AI 技术自动提取文献信息帮助管理参考文献,Semantic Scholar 是由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 3. 在内容生成和辅助写作方面,Grammarly 能通过 AI 技术提供文本校对、语法修正和写作风格建议以提高语言质量,Quillbot 是基于 AI 的重写和摘要工具,可帮助精简和优化内容。 需要注意的是,使用这些工具时要结合自身写作风格和需求,选择最合适的辅助工具。同时,对于生成的内容要仔细甄别。
2025-01-20
如何查看文章是否是ai生成的?
以下是一些常用的查看文章是否为 AI 生成的方法和工具: 1. Turnitin:这是一个广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。使用时,用户上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统会提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 6. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 7. GPTZero:专门设计用于检测由 GPT3 生成内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域广泛应用,包括文字、图像、视频生成等。AIGC、UGC(用户生成内容)和 PGC(专业生成内容)是内容生成的不同方式,主要区别在于内容的创作者和生成方式。UGC 由用户生成,内容丰富多样,适用于社交媒体等平台;PGC 由专业人士或机构生成,内容质量高、专业性强,适用于新闻媒体等平台;AIGC 由人工智能生成,可快速大规模生成内容,适用于自动化新闻等场景。
2025-01-19
李飞飞最近出的agent综述文章哪里可以看到
以下是李飞飞相关文章的获取渠道: 《》 《》
2025-01-17
查找文章那个AI好用
以下是一些在查找文章方面好用的 AI 工具及相关使用方法: 1. Perplexity.AI: 可以利用其 Search Images 功能寻找合适的素材,点击搜索结果旁的加号可快速浏览并选择与文章主题紧密相连的图片资源。 利用其强大的搜索功能获取信息,访问网站并使用搜索功能,为获得更专业和深入的结果,可启用 Pro 功能(搜索框右边的开关),该功能每天有一定次数的免费使用,经常使用可考虑开通会员服务。在搜索框中输入具体的 Prompt 可快速定位相关资讯。获取搜索结果后,可点击回答内容下方的拷贝按钮获取相关引用网站链接。 2. Bing 搜索引擎:具备联网搜索功能,与 Perplexity.AI 类似,能帮助快速搜集大量相关资料。 3. Kimi(由月之暗面开发的 AI 会话助手):具备读取网页内容并生成一定内容的能力,分批次提供资料可确保其有效读取和理解。 在获取图片方面,一般图片出处主要在 twitter 和官方网站。这两个平台是获取官方信息和高质量图片的最佳途径。如查询 OpenAI 对争议的回应时,可在 twitter 找到相关资讯,点击红框相关链接会跳转到其官方网站上发布的详细解释文章。 在处理英文内容时,若难以理解,可借助谷歌浏览器一键翻译功能,此外还有许多浏览器插件提供类似翻译服务。
2025-01-16
我把一篇文章导入后可以快速生成思维导图的工具有什么
以下是一些可以在导入文章后快速生成思维导图的工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的思维导图助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,利用 GPTs 结合 Gapier 这个提供免费 Action 的第三方平台,也可以实现将文章转换为思维导图。具体操作如下: 1. GPTs 地址: 2. 提供文章或者链接,可以是网络路径,也可以直接提供文章内容。 3. 查看思维导图,可按需求自行优化 prompt,要求提供图片下载路径或直接显示图片。但使用过程中可能偶尔存在一些问题,反馈给 Gapier 官方后解决速度较快。
2025-01-16