Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有关于数据标注行业发展趋势的文章吗?

Answer

以下是关于数据标注行业发展趋势的相关内容:

数据标注行业呈现出以下几个主要的发展趋势:

从量到质的转变:早期大模型训练侧重通过大量算力和大规模数据集来提升性能,但随着技术进步,数据质量成为提高模型性能的关键瓶颈,更注重提高数据的质量和相关性,而非单纯增加数据量和算力。

数据标注向知识密集型转变:多模态模型需处理多种类型数据,使数据标注过程更细致复杂。例如进行情绪判断或推理时,需要更高水平的理解和分析能力。这要求从事标注的人员不仅要接受专业培训,在某些情况下还需要特定领域专家执行。

数据标注的自动化和合成数据的使用:随着人工智能技术发展,数据标注领域正经历自动化转型,可使用大模型自动标注数据,提高标注效率并减少人力成本。合成数据使用越来越普遍,因其成本较低、能避免隐私问题及可生成长尾场景数据。例如在自动驾驶领域,可用于生成罕见但关键的路况场景,提高模型的鲁棒性和准确性。

此外,相关法律法规也对生成式人工智能技术研发过程中的数据标注做出规定,如提供者应制定清晰、具体、可操作的标注规则,开展数据标注质量评估,对标注人员进行必要培训等。

Content generated by AI large model, please carefully verify (powered by aily)

References

质朴发言:期待地搓手手:多模态大模型的 GPT 时刻|Z 沙龙第 6 期

在合成过程中,我们发现原始真实数据的质量和数量对合成效果的影响很大,因此我们需要尽可能提高这些数据的质量。团队发现直接使用合成数据进行训练可行,但在实际应用场景中可能会出现一些不匹配的情况。例如,不同机构或医院对阳性和阴性的定义可能不一致,导致标准不统一。尽管存在这些问题,合成数据仍是一个不错的替代训练数据集。c.数据领域的三个趋势、挑战和机会从量到质的转变早期的大模型训练侧重于“暴力美学”,即通过大量算力和大规模数据集来驱动模型的性能提升。然而,随着技术的进步,数据质量成为了提高模型性能的关键瓶颈。这意味着简单地增加数据量和算力不再足够,更重要的是提高数据的质量和相关性。数据标注向知识密集型转变多模态模型需要处理多种类型的数据(如文本、图像、声音等),这要求数据标注过程更加细致和复杂。例如,进行情绪判断或推理时,需要更高水平的理解和分析能力。数据标注不再是简单的劳动力作业,而是转变为一种知识密集型的工作。这要求从事标注的人员不仅要接受专业的培训,而且在某些情况下,需要特定领域(如法律、医疗、金融等)的专家来执行。数据标注的自动化和合成数据的使用随着人工智能技术的发展,数据标注领域正在经历自动化转型。这意味着可以使用大模型来自动标注数据,进而提高标注的效率和减少人力成本。合成数据的使用越来越普遍,主要原因包括成本较低、可以避免隐私问题以及能够生成长尾场景的数据。例如,在自动驾驶领域,合成数据可以用于生成罕见但关键的路况场景,以提高模型的鲁棒性和准确性。

【法律规定】生成式人工智能服务管理暂行办法

第五条鼓励生成式人工智能技术在各行业、各领域的创新应用,生成积极健康、向上向善的优质内容,探索优化应用场景,构建应用生态体系。支持行业组织、企业、教育和科研机构、公共文化机构、有关专业机构等在生成式人工智能技术创新、数据资源建设、转化应用、风险防范等方面开展协作。第六条鼓励生成式人工智能算法、框架、芯片及配套软件平台等基础技术的自主创新,平等互利开展国际交流与合作,参与生成式人工智能相关国际规则制定。推动生成式人工智能基础设施和公共训练数据资源平台建设。促进算力资源协同共享,提升算力资源利用效能。推动公共数据分类分级有序开放,扩展高质量的公共训练数据资源。鼓励采用安全可信的芯片、软件、工具、算力和数据资源。第七条生成式人工智能服务提供者(以下称提供者)应当依法开展预训练、优化训练等训练数据处理活动,遵守以下规定:(一)使用具有合法来源的数据和基础模型;(二)涉及知识产权的,不得侵害他人依法享有的知识产权;(三)涉及个人信息的,应当取得个人同意或者符合法律、行政法规规定的其他情形;(四)采取有效措施提高训练数据质量,增强训练数据的真实性、准确性、客观性、多样性;(五)《中华人民共和国网络安全法》、《中华人民共和国数据安全法》、《中华人民共和国个人信息保护法》等法律、行政法规的其他有关规定和有关主管部门的相关监管要求。第八条在生成式人工智能技术研发过程中进行数据标注的,提供者应当制定符合本办法要求的清晰、具体、可操作的标注规则;开展数据标注质量评估,抽样核验标注内容的准确性;对标注人员进行必要培训,提升尊法守法意识,监督指导标注人员规范开展标注工作。

《生成式人工智能服务管理暂行办法》

第五条鼓励生成式人工智能技术在各行业、各领域的创新应用,生成积极健康、向上向善的优质内容,探索优化应用场景,构建应用生态体系。支持行业组织、企业、教育和科研机构、公共文化机构、有关专业机构等在生成式人工智能技术创新、数据资源建设、转化应用、风险防范等方面开展协作。第六条鼓励生成式人工智能算法、框架、芯片及配套软件平台等基础技术的自主创新,平等互利开展国际交流与合作,参与生成式人工智能相关国际规则制定。推动生成式人工智能基础设施和公共训练数据资源平台建设。促进算力资源协同共享,提升算力资源利用效能。推动公共数据分类分级有序开放,扩展高质量的公共训练数据资源。鼓励采用安全可信的芯片、软件、工具、算力和数据资源。第七条生成式人工智能服务提供者(以下称提供者)应当依法开展预训练、优化训练等训练数据处理活动,遵守以下规定:(一)使用具有合法来源的数据和基础模型;(二)涉及知识产权的,不得侵害他人依法享有的知识产权;(三)涉及个人信息的,应当取得个人同意或者符合法律、行政法规规定的其他情形;(四)采取有效措施提高训练数据质量,增强训练数据的真实性、准确性、客观性、多样性;(五)《中华人民共和国网络安全法》、《中华人民共和国数据安全法》、《中华人民共和国个人信息保护法》等法律、行政法规的其他有关规定和有关主管部门的相关监管要求。第八条在生成式人工智能技术研发过程中进行数据标注的,提供者应当制定符合本办法要求的清晰、具体、可操作的标注规则;开展数据标注质量评估,抽样核验标注内容的准确性;对标注人员进行必要培训,提升尊法守法意识,监督指导标注人员规范开展标注工作。

Others are asking
开一个AI数据标注公司的落地和具体实操应当如何
开设一家 AI 数据标注公司需要以下落地和具体实操步骤: 1. 市场调研 了解当前 AI 数据标注市场的需求和趋势。 分析竞争对手的优势和不足。 2. 团队组建 招聘具备数据标注技能和经验的人员,包括标注员、质检员等。 对团队进行培训,确保他们熟悉标注规范和流程。 3. 制定标注规范 明确不同类型数据的标注标准和要求。 建立质量控制流程和标准。 4. 技术和工具准备 选择适合的数据标注工具和软件。 搭建稳定的 IT 基础设施,保障数据安全和存储。 5. 寻找客户和项目 与 AI 企业、科研机构等建立联系,争取合作机会。 展示公司的标注能力和优势。 6. 项目管理 合理安排标注任务,确保按时交付。 及时处理项目中的问题和变更。 7. 质量监控 定期对标注结果进行抽检和评估。 依据质量反馈对标注流程和人员进行调整和优化。 8. 合规与法律事务 确保公司的运营符合相关法律法规。 处理好数据隐私和知识产权等问题。 9. 财务管理 制定合理的预算和成本控制策略。 确保公司的资金流稳定。 10. 持续改进 关注行业动态,不断改进标注技术和流程。 提升公司的竞争力和服务质量。
2025-02-17
数据标注这个行业前景如何
数据标注行业具有一定的前景,但也面临着一些变化和挑战。 从前景方面来看: 1. 数据质量成为提高模型性能的关键瓶颈,这使得数据标注的重要性日益凸显。 2. 多模态模型的发展需要更加细致和复杂的数据标注,为行业带来了更多需求。 3. 随着技术的进步,数据标注不再是简单的劳动力作业,而是向知识密集型转变,这要求从事标注的人员具备更高的专业水平和特定领域的知识,从而提升了行业的专业性和价值。 然而,也存在一些挑战: 1. 数据标注工作繁琐,数据清洗工作占据了大量时间。 2. 合成数据的使用虽然带来了便利,但也存在与真实数据分布不一致可能导致模型偏差等风险。 在数据标注的具体操作上,数据标注可以分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 自动标注 caption 时,需要进行一系列的操作和配置。
2025-02-05
ai训练师和标注师的工作区别是什么
AI 训练师和标注师的工作存在以下区别: 1. 工作重点:标注师主要负责编辑和扩大数据集,对数据进行标注和整理;而训练师在训练模型时涉及数据清洗、数据生成、对齐等操作,需要用到 Prompt 工程的地方较多。 2. 技能要求:标注师侧重于对数据的准确理解和标注能力;训练师则需要具备更深入的技术知识,包括对模型训练原理和相关技术的掌握。 3. 工作影响:标注师的工作直接影响数据集的质量和丰富度,为模型训练提供基础;训练师的工作决定了模型的训练效果和性能。
2024-11-28
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
AI和人工标注相关
以下是关于 AI 和人工标注相关的内容: 在 Agent 相关比赛的赛道介绍中,涉及到多个与 AI 和人工标注相关的参考方向,包括: 1. 内容生成:AI 可自动编写文章并选择或生成相应图片。 2. 图像标注:AI 能识别和理解图片内容,并生成相应文字描述。 3. 图文匹配:为给定图片找到合适文字描述,或为给定文字找到匹配图片。 4. 数据可视化:将复杂数据用图表、信息图等方式可视化展示,使解读更直观简洁。 5. 设计辅助:例如生成 LOGO、海报设计等。 6. 自动化排版:根据文本内容与结构自动进行页面布局和美观排版。 7. 图文识别:借助 OCR 技术抓取图文内容后,AI 能够理解并处理。 8. 新闻和社交媒体:AI 可对大量新闻和社交媒体信息自动编辑和汇总,生成图文摘要。 9. 艺术创作:辅助绘画、音乐创作。 在 OpenAI O1 的训练中,可能采用的训练数据包括人工标注数据和合成数据。对于人工标注数据,会人工标注一批 COT 思考过程,形成<问题,思考过程(包括思考过程中出现的错误及错误修正过程),答案>,用这些数据 SFT 一下 o1 初始的模型,启动其输出模式。但人工标注存在难度大、成本高、可扩展性差的问题,优点是质量较高。之后可以采用合成数据的模式,如从人工标注的 COT 里截取片段,用 MCTS 树搜索方式补齐后续推理过程,或者对于有确定标准答案的逻辑问题,通过不断试错的模式搜索答案,这些正确或错误的答案都可用于训练 o1 模型。
2024-10-14
推荐分析PDF文档 提炼标注关键词的AI
以下是一些可以分析 PDF 文档、提炼标注关键词的 AI 产品或方法: 1. DeepL(网站):点击页面“翻译文件”按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部“更多”按钮,选择“制作双语 BPUB 电子书”、“翻译本地 PDF 文件”、“翻译 THML / TXT 文件”、“翻译本地字幕文件”。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件“Ebook Translator”。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译“Document”按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏“文件翻译”,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击“文档翻译”,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方“切换成电子书”,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-14
ai在人力资源服务行业上的发展趋势
以下是关于 AI 在人力资源服务行业发展趋势的相关内容: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了信贷评估、欺诈评分等方面的改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域,包括教育、游戏、商业等。与传统 AI/ML 侧重基于现有数据进行预测或分类不同,生成式人工智能能创造全新内容。这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。在金融服务行业,预计优秀的新公司和现有企业将立即开始接纳生成式人工智能。 在人力资源服务行业,相关报告如《用友:AI 在企业招聘中的应用现状调研报告》预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,无需雇佣额外劳动力,传统劳动力市场将和软件融合成新市场。从企业组织结构来看,提供这种 AI 劳动力的产品有两种形式。
2024-12-10
ai的现状和未来发展趋势
目前人工智能的现状和未来发展趋势如下: 现状: 更多资金投入:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮持续且更加“奢华”。 计算压力挑战:政府和大型科技公司承受着逼近电网极限的计算需求压力。 AI 介入选举:虽预期影响尚未成真,但需保持警惕。 未来发展趋势: 专业化细分:从通用能力转向专注特定领域或功能,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等,各细分领域不断提升核心能力,提供更精准高质量服务。 商业模式创新:包括 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从技术展示向解决用户痛点和创造商业价值转变。 应用场景不断扩展,包括但不限于: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量,缓解拥堵。 物流和配送,优化路线和计划,降低运输成本。 无人机送货,快速送达偏远地区。 教育,提供个性化学习体验。 农业,分析农田数据,提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用,提高能源效率。 未来人工智能将对我们的生活产生更加深远的影响。
2024-12-07
现在数字人直播还有发展趋势吗?
数字人直播仍有发展趋势。 数字人是运用数字技术创造出来的,虽现阶段不能高度智能,但已在生活场景中常见,且随 AI 技术发展迎来应用爆发。业界对其尚无准确定义,一般可分真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,应用于影视和直播带货,其表现质量与建模和动捕设备精度有关,不过视觉算法进步使无昂贵设备时也能有不错效果。 数字人直播的盈利方式包括直接卖数字人工具软件(分实时和非实时驱动,价格不等)和提供数字人运营服务按成交额抽佣。适用品类和场景方面,适用于不需要强展示的商品如品牌食品饮料、虚拟商品,店播效果较好,数据能保持跟真人一样,不适用于促销场景和服装等过品快、建模成本高的商品。 AI 直播存在一定壁垒,如更真实的对口型、更低的响应延迟等,目前仍有技术门槛,但时间拉长技术上无壁垒,不会一家独大,可能有 4 5 家一线效果公司,大多为二三线效果公司。真正把客户服务好、能规模化扩张的公司更有价值,有资源和业务的大平台下场可能带来降维打击。同时,在电商领域,数字人配套的运营服务才是关键,不能依赖数字人,其目前只能是辅助。在店播场景下,实时互动必要性不高。
2024-12-06
目前中国国内AI大模型的发展趋势
目前中国国内 AI 大模型的发展呈现出以下趋势: 1. 发展阶段:自 ChatGPT 发布以来,大致经历了准备期(国内产学研迅速形成大模型共识)、成长期(大模型数量和质量逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 2. 竞争态势:2023 年上半年,国内众多企业纷纷投入资源研究类 GPT 架构,试图创造国产 AGI;下半年则纷纷转向“垂直应用”和“商业化”。 3. 技术差距:中美在 AGI 技术上仍存在差距,国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 有不小差距。 4. 企业表现:百度的“文心 4.0”是当前国内能力较好的模型之一,即将发布的阿里的“通义千问”也备受关注。但大厂们在冲击 AGI 方面虽有资源优势,但实际效果尚未有明确亮点,且受内部短期考核压力和其他业务、政治考量的影响。 要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在通往 AGI 之路的知识库里,会定期更新相关的排名报告,可供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-04
ai是大发展趋势吗
AI 是大发展趋势。以下是一些支持这一观点的理由: 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注该领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 金融服务业将比想象得更快地接纳生成式 AI:人工智能和机器学习在金融服务行业已有十多年应用历史,促成了一系列改进。大型语言模型通过生成式人工智能代表重大飞跃,正在改变多个领域,这种能力结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。 红杉资本观点:AI 正处于重要发展阶段,一年内实现了与 SaaS 行业十年相同的收入。产业变革规模大,相关行业的 TAM 将扩展到几乎所有人类参与的行业。应用层大量创新,重点将转移到更高层次认知任务。拥抱 AI 的公司竞争优势将因成本降低、投资成本降低、收入增长及创新传统行业而上升。 综上所述,AI 具有巨大的发展潜力和趋势。
2024-11-22
未来AI的发展趋势是什么?
未来 AI 的发展趋势主要包括以下几个方面: 1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。 3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。 4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。 5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。 6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。 7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。 8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
2024-10-30
英文文章重点总结的AI
以下是为您总结的相关英文文章重点: 1. 每周一更新的 AIGC 领域内容,包括谷歌开源的新语言模型 Gemma 2B 和 Gemma 7B,采用与 Gemini 相同技术且质量更高;Stability AI 发布的新图像生成模型 Stable Diffusion 3,可生成图像和视频;Groq 公司利用新型硬件实现语言模型每秒 500 个 Token 的高速输出,速度比顶级运营商快 18 倍;还介绍了新的 AI 产品如视频风格转换平台 GoEnhance、将 Figma 设计转为 React 组件的插件、用于项目管理的工具 Kraftful 等,以及精选的几篇英文文章,如优化 Stable Diffusion XL 的方法、构建语言模型 Tokenizer 的教程、新模型 Sora 和 LAVE 等的应用。 2. 常见的文章润色 AI 工具包括:Wordvice AI 集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务;ChatGPT 由 OpenAI 开发,可用于多方面写作辅助;Quillbot 是人工智能文本摘要和改写工具;HyperWrite 是基于 AI 的写作助手和大纲生成器;Wordtune 是 AI 驱动的文本改写和润色工具;Smodin 提供 AI 驱动的论文撰写功能。这些工具涵盖了文章润色的各个环节,科研人员和学生可根据自身需求选择。 3. 除聊天内容外,可让 AI 总结整理各种文章(不超过 2 万字),如复制文章给 GPTs 总结。对于 B 站有字幕的视频,可通过安装油猴脚本获取字幕,将字幕文字内容复制给 GPTs 进行总结,总结完还可继续提问或探讨。
2025-02-18
推荐些AI文章
以下是为您推荐的一些 AI 文章: 1. 《新手如何学习 AI?》 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅:在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 实践和尝试:理论学习后实践是巩固知识的关键,尝试使用各种产品做出作品。知识库提供了很多实践后的作品、文章分享,欢迎您实践后分享。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 2. 《01通往 AGI 之路知识库使用指南》 关于 AI 知识库使用及 AIPO 活动的介绍:讨论了使用情况、发起背景、内容安排及相关资源等。 AIPO 线下活动及 AI 相关探讨:包括活动规则和玩法,以及 AI 在科技发展中的地位和研究方向。 way to AGI 社区活动与知识库介绍:讨论了活动安排、材料准备、知识库使用和内容更新等。 关于 AI 知识库及学习路径的介绍:包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 3. 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》 上篇文章主要介绍了 WaytoAGI 和为什么要学习研究 AI。 本次推荐两个视频: (女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,新手友好,50 分钟速通 AI 大模型原理。 :某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,视频链接是第二期。两期内容都值得观看,访谈非常硬核。
2025-02-17
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
头条文章仿写提示词
以下是关于头条文章仿写提示词的相关内容: 1. 通过广泛试验获得逆向提示词:对给定文本进行逆向提示词工程,提炼文章的语气、写作风格、用词、句式等要素,生成能让 ChatGPT 以任意主题写出类似风格文章的提示词。例如,将乔布斯在斯坦福大学的演讲转化为提示词,可应用于相关演讲稿或自我分享文本创作场景。 2. 设计拟人化提示词模板:如模拟江南皮革厂销售的拟人化提示词模板,用于创造吸引人的广告词,并可与语音技术结合,创造有趣有效的销售助手。 3. 样例驱动的渐进式引导法:这是一种让 AI 读懂用户想法的方法。以 1 2 个正向样例为起点,通过多轮对话,引导 AI 提炼隐含生成要求,逐步完善提示词。核心步骤包括构建初始样例、评估样例并提炼模板、固定模板强化要求说明、生成结构化提示词。用户主要提供初始样例、判断输出质量、反馈改进建议。该方法简化了提示词设计过程,让非专业用户也能创建高质量 Prompt。
2025-02-15
头条文章二创提示词
以下是关于头条文章二创提示词的相关内容: 1. 对于提高文章原创度的二创,可直接拿原文执行以下步骤: 步骤 1:使用 ChatGPT 先对一段文字进行改写。 步骤 2:对改写后的文字进行原创性检测。 步骤 3:把原创度检测工具的结果告诉负责二创的 ChatGPT 角色,让其继续改写。 步骤 4:不断重复步骤 2 和步骤 3,让 ChatGPT 多次对文章进行二创。 步骤 5:让 ChatGPT 自己总结提示词,使用逆向工程提示词对文字二创过程进行提炼,多让其回答几次相关问题,然后把多次回答的结果进行提炼总结,形成更完整的内容。 步骤 6:整理 ChatGPT 返回结果,形成文字二次创作的通用提示词。 2. 网文创作提示词方面,有通用版和玄幻版,可根据需求调整,写作助手可能不太好用,重要的是根据自己需求调整。 3. 在“韦恩:扣子‘AI 应用’入门”中,关于变现和二创,可发布到社群、公众号、小红书、小程序或接受客户定制,二创方向可修改提示词为国风换装、新年换装等。
2025-02-15
为文章配图用哪个AI软件?
以下是一些可为文章配图的 AI 软件及相关方法: 1. 利用免费图库:让 AI 分析文章内容,给出配图建议和关键词,然后在免费图库中快速找到合适的无版权图片。 2. 搜索同行封面:在微信公众号中搜索同行的封面,直接“拿来主义”。若正文里没有封面图,可使用壹伴浏览器插件(需会员)获取,或使用秘塔 AI 搜索工具,如在线工具 https://www.mgpaiban.com/tool/wxfm.html 。 3. 无界 AI:网址为 https://www.wujieai.cc/ 。其做图逻辑类似于 SD,优势在于国内网络即可稳定使用、有免费出图点数、支持中文关键词输入、无需额外下载风格模型可直接取用。在使用时,可选择皮克斯卡通模型,根据应用场景选择画幅比例,如朋友圈 po 图选择 1:1 ,并输入相关关键词类别,如场景、氛围、人物、造型、情绪、道具、构图、画面等。
2025-02-14
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
数据处理
数据处理的相关知识如下: 根据《数据安全法》第三条第二款的规定,数据处理指的是“包括数据的收集、存储、使用、加工、传输、提供、公开等”。但在某些情况下,数据处理相对狭义,仅指向数据收集后的存储、使用、加工、公开等行为,不包括数据的收集,以及数据的传输、提供等流转行为。 数据处理是 AIGC 服务的核心环节之一,受到《数据安全法》《个人信息保护法》《网络安全法》等法律法规的规制。AIGC 服务提供者在该环节存在大量法定义务,常见行政法风险包括:开展数据处理活动未依照法律、法规的规定,建立健全全流程数据安全管理制度;未组织开展数据安全教育培训;未采取相应的技术措施和其他必要措施保障数据安全;利用互联网等信息网络开展数据处理活动,未在网络安全等级保护等。 《数据安全法》第一条指出,制定本法是为了规范数据处理活动,保障数据安全,促进数据开发利用,保护个人、组织的合法权益,维护国家主权、安全和发展利益。第二条规定在中华人民共和国境内开展数据处理活动及其安全监管适用本法,在境外开展数据处理活动损害我国相关权益的依法追究法律责任。第三条对数据、数据处理、数据安全进行了定义。此外,还对数据安全工作的决策和协调机构、各地区和部门的职责、相关主管部门和机关的监管职责、个人和组织与数据有关的权益等方面做出了规定。 在 GDPR 通用数据保护条例中,对揭示种族或民族出身,政治观点、宗教或哲学信仰,工会成员等个人数据的处理有禁止规定,但在符合特定情形时不适用,如数据主体明确同意、为实现特定目的必要、保护切身利益必要等。
2025-02-18