Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么评估提示词的效果?

Answer

评估提示词的效果可以从以下几个方面进行:

  1. 模型的准确率:观察模型生成的回答与预期结果的匹配程度。
  2. 流畅度:检查生成的文本在语言表达上是否通顺、自然。
  3. 相关性:判断生成的内容与提示词所表达的意图和需求的关联程度。

提示词工程师在评估提示词效果时,通常会采取以下步骤和方法:

  1. 设计提示:根据用户需求和模型能力,精心考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图。
  2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式,不断改进提示。
  3. 实际测试:包括对基础提示词模板的测试,确保其能兼容国内外各种模型,并生成拟人化的提示词,然后将其应用于不同模型中评估实际应用效果和适应性。

此外,提示工程有几项核心原则:

  1. 编写清晰的指令。
  2. 将复杂任务分解为简单任务。
  3. 给模型一定的时间空间思考。
  4. 系统地测试性能变化。

要提高提示技巧,应多学习和实践。同时,可以参考大模型厂商的提示工程指南,以及 LangGPT 结构化提示词知识库中的相关资料,如:http://feishu.langgpt.ai/

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是提示词工程师(Prompt Engineer)

[title]问:什么是提示词工程师(Prompt Engineer)提示词工程师(Prompt Engineer)是指在与人工智能模型进行交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。作为提示词工程师,他们需要具备一定的领域知识、理解人工智能模型的能力以及对用户需求的敏感性。提示词工程师的主要职责包括:设计提示:提示词工程师需要根据用户需求和模型能力设计有效的提示。他们需要考虑提示的长度、结构、措辞和信息量等因素,以确保提示能够清晰地传达用户意图并引导模型生成满意的结果。优化提示:提示词工程师需要不断优化提示,以提高模型的性能。他们可以通过收集用户反馈、分析模型结果和实验不同的提示策略等方式来优化提示。评估提示:提示词工程师需要评估提示的有效性。他们可以使用各种指标来评估提示,例如模型的准确率、流畅度和相关性等。提示词工程师需要具备以下技能和知识:领域知识:提示词工程师需要对他们所工作的领域有深入的了解,以便能够设计出有效的提示。自然语言处理(NLP):提示词工程师需要了解NLP的基本原理和技术,以便能够理解和生成自然语言文本。人工智能(AI):提示词工程师需要了解AI的基本原理和技术,以便能够理解和使用AI模型。沟通能力:提示词工程师需要具备良好的沟通能力,以便能够与用户、团队成员和其他利益相关者有效沟通。提示词工程师是一个新兴的职业,随着人工智能技术的不断发展,对提示词工程师的需求将会越来越大。以下是一些提示词工程师工作的实际案例:

提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理

[title]提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理[heading1]四、实际测试在全面理解了提示词的结构和内容后,我们自然要进行实际测试,看看这个模板在实际应用中的效果如何。我们的测试流程包括两个大部分。首先,我们对基础的提示词模板进行测试,以确保它能够兼容国内外的各种模型,并成功生成拟人化的提示词。之后,我们将这些拟人化提示词应用于不同的模型中,进一步评估它们的实际应用效果和适应性。

3. 如何让 LLM 应用性能登峰造极

提示词是调用大模型能力的接口,精心设计的提示词可以大大提高模型的准确性和相关性。相比其他技术,通过提示工程优化LLM性能门槛更低、成本也更低。在优化LLM性能的过程中,提示工程往往是要做的第一件事情(若能始于提示工程,终于提示工程则最好啦hh)。基于提示工程快速建立应用原型,并且以此为性能参考基准,用于后续优化性能对比。使用提示工程构建好应用之后,要进一步提高性能则可以考虑添加外部辅助工具、添加参考内容等手段,这就涉及到RAG、Agents等相关技术。鉴于提示词对LLM的核心作用,在实际中,进行RAG、微调或其他高级技术之后也应该再次进行提示工程优化提示词,如前面所说,提示工程贯穿LLM性能优化过程的始终。提示工程的几项核心原则就是:编写清晰的指令将复杂任务分解为简单任务给LLM一定的时间空间思考系统的测试性能变化几项原则看着简单,实践却是不易,要提高提示技巧应多学多练。关于如何写好prompt网上的资料有很多了,推荐阅读几家大模型厂商的提示工程指南,LangGPT结构化提示词知识库中也有很多高质量资料和提示词,在此不再赘述。LangGPT结构化提示词知识库:[http://feishu.langgpt.ai/](http://feishu.langgpt.ai/)在提示工程进行过程中和后续进一步的性能优化过程中,如何知道性能是否变好呢?如何系统的测试性能变化?下面讲讲如何做好性能评估

Others are asking
AI应用于教育行业在评估和认证机制的改革方面的问题
AI 应用于教育行业在评估和认证机制的改革方面存在以下问题: 1. 教育体系具有惯性,课程设置、教师资格认证、学术评价体制等均有深厚传统根基,更新和调整需要时间,资源重新配置无法一蹴而就,大规模改革提案的决策流程涉及多方利益博弈,是长期议程。 2. 现有的教育体系追求稳定性和标准化,而非灵活性和快速响应,抵制变动,本质上较为保守,与 AI 引领的教育创新所需的快速试错和持续迭代能力脱节。 3. 教育政策更新滞后,政策制定者对新兴技术理解不足,无法充分预见技术对教育的长远影响,政策调整受预算限制、法规约束和政治周期影响,过程缓慢。 4. 技术与政策的脱节体现在教师的培训和招聘上,多数教师未接受相关培训,不仅要掌握工具操作,还需了解如何与教学目标结合,当前教师培训和专业发展项目在数量和质量上与需求存在差距。 5. 现有评估和认证机制侧重于传统学习方法和结果,学校和教师受其约束,创新的教育实践难以得到认可,甚至可能因偏离既定评价标准而遭质疑。
2025-02-10
AI可行性评估报告
以下是为您提供的关于 AI 可行性评估报告的相关内容: 一、关于 AI 责任和新技术的提案 1. 该提案建立在 4 年的分析和利益相关者(包括学者、企业、消费者协会、成员国和公民)的密切参与基础上。 2. 准备工作始于 2018 年,成立了责任和新技术专家组。专家组于 2019 年 11 月发布报告,评估了 AI 的某些特征对国家民事责任规则构成的挑战。 3. 专家组报告的输入得到了三项额外外部研究的补充: 基于欧洲侵权法对关键 AI 相关问题的比较法律研究。 关于责任制度有针对性调整对消费者决策(特别是他们对采用 AI 支持的产品和服务的信任和意愿)影响的行为经济学研究。 涵盖一系列问题的经济研究,包括 AI 应用的受害者与非 AI 设备的受害者在试图获得损失赔偿时面临的挑战;企业对当前责任规则在其涉及 AI 的业务中的应用是否不确定以及不确定程度;法律不确定性的影响是否会阻碍对 AI 的投资;国家责任法的进一步碎片化是否会降低 AI 应用和服务的内部市场的有效性,以及通过欧盟立法协调国家民事责任的某些方面是否会减少这些问题并促进欧盟公司对 AI 技术的总体采用。 二、AI 相关的其他内容 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,可使用“退后一步”提示词,让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势是避免错误方向的持续生成,促使模型输出新的思考过程。但如果模型输出内容已过于冗杂,建议修改原始提示词。 2. AI 对程序员工作的影响分析:AI 可代替代码生成、补全、分析问题和数据提取、辅助架构设计文档等部分;无法代替需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。专业程序员可通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。 3. AI 应用场景:可从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。适合验证新闻、访谈或声明的真实性,发现潜在问题。 三、关于 AI 的创新方法 1. 政府已通过发布相关内容支持工具的开发。 2. 提出关于非监管工具对组织嵌入可信 AI 的帮助。 3. 包括长期规划,如交付确保框架有效的核心功能的首次迭代、与关键监管机构合作、发布草案咨询、开发监管沙盒或试验台、发布监测和评估报告、更新 AI 监管路线图等。
2025-01-22
请写一份基于人工智能的智能家居安防系统建设方案,包括项目介绍、商业模式、、竞品分析、行业分析、经营规划、风险评估、融资规划等。
以下是为您生成的基于人工智能的智能家居安防系统建设方案: 项目介绍: 智能家居安防系统是利用人工智能技术,对家居环境进行实时监控和安全防护的系统。它融合了智能硬件、智能软件、智能网联和服务平台等技术,旨在提升家居安防的效率和可靠性。 商业模式: 可以采用设备销售与服务订阅相结合的模式。销售智能安防设备获取收入,同时提供定期的维护和升级服务,用户按需订阅。 竞品分析: 目前市场上的竞品主要包括传统安防企业的智能化产品和新兴科技公司的创新方案。传统企业可能在硬件制造和渠道方面有优势,新兴公司则在技术创新和用户体验上有所突破。 行业分析: 智能家居安防市场正处于快速发展阶段。随着人们对生活品质和安全的重视,需求不断增长。同时,技术的进步也为行业发展提供了有力支持。 经营规划: 1. 产品研发:不断优化智能安防设备的性能和功能。 2. 市场推广:通过线上线下多种渠道进行宣传和推广。 3. 客户服务:建立完善的售后服务体系,提高用户满意度。 风险评估: 1. 技术风险:如技术更新换代快,需要持续投入研发。 2. 市场风险:竞争激烈,市场份额可能受到挤压。 3. 法律风险:需符合相关法律法规和标准。 融资规划: 根据项目的发展阶段和资金需求,制定合理的融资计划。可以考虑天使投资、风险投资、银行贷款等多种融资渠道。 需要注意的是,以上方案仅为初步框架,具体内容还需要进一步深入调研和细化。
2024-12-11
AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。
以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容: 大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中: 1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。 2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。 3. 要用合适的算法让大模型更好理解 Token 之间的关系。 4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。 Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。 在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。
2024-12-05
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
帮我找知识库里和「评估」相关的内容或文章
以下是知识库里与“评估”相关的内容: 提示工程: 评估程序在优化系统设计时很有用。好的评估程序需要具备以下特点: 具有代表性:能够代表真实世界的使用场景,或者至少包含多样化的测试用例。 样本量充足:拥有足够的测试用例,以保证统计结果的可靠性。 易于自动化:可以自动运行或重复执行。 评估工作可以由计算机、人类或两者协作完成。计算机可以使用客观标准以及一些主观或模糊标准自动执行评估,其中模型输出由其他模型查询评估。是一个开源软件框架,提供了创建自动评估程序的工具。 基于模型的评估在评估具有多种可能答案的问题时非常有用,模型可以根据预定义的标准对不同的答案进行评分,帮助我们选择最佳答案。可以用模型进行评估和需要人工评估之间的界限是模糊的,并且随着模型变得越来越强大而不断变化。 OpenAI 官方指南: 评估程序(或称为“Evals”)对于优化系统设计非常有用。良好的评估: 代表现实世界的使用(或至少是多样化的)。 包含许多测试用例以获得更大的统计能力。 易于自动化或重复。 输出的评估可以由计算机、人类或混合来完成。计算机可以使用客观标准以及一些主观或模糊标准来自动评估,其中模型输出由其他模型查询评估。是一个开源软件框架,提供用于创建自动评估的工具。 当存在一系列可能被认为质量相同的输出时,基于模型的评估可能很有用。使用基于模型的评估可以实际评估的内容与需要人工评估的内容之间的界限是模糊的,并且随着模型变得更强大而不断变化。 Gemini 报告: 为了评估 Gemini 模型在政策领域和其他在影响评估中确定的关键风险领域中的表现,在模型开发的整个生命周期中开展了一系列评估。 在训练和优化 Gemini 模型过程中,会进行开发评估以进行“hillclimbing”。这些评估是由 Gemini 团队设计的,或者是针对外部学术基准的评估。评估考虑诸如有用性(指令遵循和创造力)、安全性和事实性等问题。 保证评估是为了治理和审查而进行的,通常在关键里程碑或培训运行结束时由模型开发团队之外的团队进行。保证评估按照模态进行标准化,数据集严格保密。只有高层次的见解被反馈到训练过程中,以协助缓解工作。保证评估包括对 Gemini 政策的测试,并包括对潜在生物危害、说服力和网络安全等危险能力的持续测试。 外部评估由谷歌之外的合作伙伴进行,以发现盲点。外部团体对模型进行了一系列问题的压力测试,包括白宫承诺书中列出的领域,测试通过结构化评估和非结构化的红队测试进行。这些评估的设计是独立的,并且结果定期报告给 Google DeepMind 团队。
2024-09-30
论文撰写的提示词
以下是关于论文撰写提示词的相关内容: 1. 通用原则: 目标明确:确保每一步的目标清晰,AI 需要明确指导以产生相关和有价值的输出。 逻辑性:在所有提示策略中,逻辑性是关键,清晰、结构化的提示有助于 AI 更有效地生成输出。 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按清晰步骤进行至关重要。 考虑变量:在某些情境中尤为重要,需考虑可能影响结果的所有因素。 2. 实验示例: 运用 CoD 将文章做摘要的实验,通过 GPT 的五轮输出,以中英文两种方式撰写提示词,个人观点认为英文提示词加上中文输出的方式效果较好,密度等级 4 的结果较让人满意。 3. 学术场景数据处理: 论文内容总结:大模型结合有效的提示词可迅速总结概括文档,节省时间,如 GLM4Plus 结合良好的提示词能帮助学生快速总结论文内容。 论文内容翻译:大模型可弥补翻译软件的不足,帮助学生快速翻译论文内容,如 GLM 结合良好的提示词能提高论文阅读效率。 论文内容扩写润色:可将论文内容转化为社交媒体的科普内容,精心设计的润色提示词能根据特定场景调整,生成多样化润色结果,如针对小红书使用场景调整提示词。 4. PromptAgent 相关: 通过将 PromptAgent 应用于涵盖三个实用且不同领域的 12 个任务,能够发现有生产力的专家级提示词。PromptAgent 从初始人工编写的提示词和小组训练样本开始,不仅提高了初始人类提示词的性能,还超越了强大的 ChainofThought 和近期的提示词优化基线。大量定性结果突显了优化提示词的专家级方面,随着更强大 LLM 的出现,专家级的提示词引导将引领提示词工程的下一个时代,PromptAgent 站在了开创性的步骤上。
2025-02-21
如何修改提示词
以下是关于修改提示词的一些方法和要点: 在 Midjourney 官方用户端: 点击提示栏右端的设置图标,可以更改提示词的固定设置,包括图像大小(通过移动光标调整横竖屏和常见比例)、模式(在标准模式和原始模式之间切换)、版本(选择使用的 MidJourney 版本)、个性化(开启后自动应用最新代码设置)、美学(如风格化、奇异度、多样性的数值调整)以及更多选项(如速度选择放松、快速或极速模式)。 对于 Claude2: 优化提示词类似于进行一系列实验。进行测试,解释结果,然后根据结果调整变量(提示词或输入)。 当 Claude2 测试失败,尝试确定失败原因,调整提示词,例如更明确地编写规则或添加新规则,通过添加示例和规范输出展示如何正确处理,在某一类型输入表现良好时尝试其他输入类型,确保尝试极端情况,添加规则和示例直至在代表性输入集合上取得良好表现,建议进行“保留测试”。 在 SD 新手入门中: 根据想画的内容写出提示词,多个提示词之间使用英文半角逗号“,”分隔。 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,描述细节的最后,大致顺序为:(画面质量提示词)、(画面主题内容)(风格)、(相关艺术家)、(其他细节)。 每个词语在模型中的自带权重可能不同,训练集中较多出现的关键词输入一个就能极大影响画面,反之输入多个相关词汇可能影响有限。提示词顺序很重要,越靠后权重越低。 关键词应具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 可以使用括号人工修改提示词的权重,例如“”在提示词中使用字面意义上的括号字符。
2025-02-21
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中,一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-02-21
deekseek生成助手提示词的指令
以下是关于 DeepSeek 生成助手提示词的相关内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 如果不知道如何表达,还是可以套用框架指令 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型 修正方案 示例对比 宽泛需求:添加维度约束,原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 主观表述:量化标准,原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证 七、效能监测指标 1. 首次响应准确率:目标>75% 2. 多轮对话效率:问题解决平均轮次<3 3. 复杂任务分解:支持 5 级子任务嵌套 此外,还有关于利用 DeepSeek 生成小红书爆款单词视频的相关内容: 1. 生成单词 开始:输入单词主题、图片风格、单词数量。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,这样 deepseek 就可以为用户输出指定数量的几个单词,以数组方式输出。 2. 角色:您是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。 3. 技能:输出关联英语单词,当用户输入主题时,分析主题内涵,运用专业知识,输出指定数量个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过 15 个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。 4. 限制:仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量 yingwen,中文翻译对应变量 zhongwen,美式音标对应变量 yinbiao,英文句子对应变量 juzi_yingwen,中文句子翻译对应变量 juzi_zhongwen,不得有其他格式偏差。
2025-02-21
如何使用ai提示词
以下是关于如何使用 AI 提示词的详细介绍: 1. 提示词的定义和输入语言: 提示词用于描绘您想要的画面。 不同模型对输入语言有不同要求,如星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如“一个长头发的金发女孩”),基础模型 1.5 使用单个词组(如“女孩、金发、长头发”),且支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 对使用提示词的认识: 不能期待设计一个完美的提示词就得到完美答案,提示词实际上是一个相对完善的“谈话方案”,成果在与 AI 的对话中产生,需要在对话中限缩自己思维中的模糊地带。 要接受 AI 的“不稳定性”,对其进行教育、监督和鞭策。
2025-02-21
Prompt 提示词
以下是关于 Prompt 提示词的全面介绍: 一、如何编写提示词 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等要求。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解任务主题和类型。 8. 测试和调整:根据生成结果检查并调整。 二、如何润色或优化 Prompt 1. 明确具体描述:使用更具体、细节的词语和短语。 2. 添加视觉参考:插入相关图片参考。 3. 注意语气和情感:用合适的形容词、语气词调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序。 5. 增加约束条件:添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt。 7. 参考优秀案例:研究有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法并根据效果反馈优化。 三、星流一站式 AI 设计工具中的 Prompt 输入框 1. 提示词用于描绘画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用后可扩展提示词,更生动描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可点击官方预设词组生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词:点击齿轮按钮弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
有免费的文生图,而且效果很好的ai软件
以下为一些免费且效果较好的文生图 AI 软件及相关简易上手教程: Liblibai: 1. 定主题:明确生成图片的主题、风格和要表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:同样用英文单词和短语组合。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间。 10. 尺寸:根据个人喜好和需求选择。 Dreamina 即梦: 1. 定主题:确定生成图片的主题、风格和信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的,如麦橘、墨幽的系列模型。 3. 选择 lora:参考广场上好看的帖子选择合适的 lora。 Tusiart: 1. 定主题:明确生成图片的主题、风格和信息。 2. 选择基础模型 Checkpoint:选择贴近主题的,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找重叠内容的 lora 控制图片效果和质量。 4. ControlNet:可控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等。 5. 局部重绘:后续学习。 6. 设置 VAE:选择 840000 。 7. Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文单词和短语组合。 9. 采样算法:一般选 DPM++2M Karras,参考模型作者推荐的采样器更稳妥。 10. 采样次数:选 DPM++2M Karras 时,在 30 40 之间。 11. 尺寸:按需选择。 此外,还有一些其他的文生图工具,如: Runway:网址 https://runwayml.com/ ,有网页和 app ,方便使用。 Pika:网址 https://pika.art/ 、https://discord.gg/pika ,已收费。 PixVerse:网址 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。 GigaStudio:网址 https://studio.gigaai.cc/ ,10 个免费极光,创作者可申请免费会员,文生视频效果好。 Heygen:网址 https://www.heygen.com/ ,最近不好注册使用。 Krea:网址 https://www.krea.ai/ ,12 月 13 日免费公测。 Kaiber:网址 https://kaiber.ai/ 。 Moonvalley:网址 https://moonvalley.ai/ 。 Mootion:网址 https://discord.gg/AapmuVJqxx ,3d 人物动作转视频。 美图旗下:网址 https://www.miraclevision.com/ 。 Neverends:网址 https://neverends.life/create ,2 次免费体验,操作傻瓜。 SD:Animatediff SVD deforum 。 Morph Studio:网址 https://app.morphstudio.com/ ,还在内测。 七火山:网址 https://etna.7volcanoes.com/?ref=pidoutv.com 。
2025-02-19
图片转视频说话 效果好 软件 有哪些
以下是一些能实现图片转视频说话且效果较好的软件: 1. HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 1. 点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。 2. 上传后效果如图所示,My Avatar处显示上传的照片。 3. 点开大图后,点击Create with AI Studio,进入数字人制作。 4. 写上视频文案并选择配音音色,也可以自行上传音频。 5. 最后点击Submit,就可以得到一段数字人视频。 2. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 1. 点击上面的网址,点击右上角的Create vedio。 2. 选择人物形象,可以点击ADD添加照片,或者使用DID给出的人物形象。 3. 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 4. 最后,点击Generate vedio就可以生成一段视频。 5. 打开自己生成的视频,可以下载或者直接分享给朋友。 3. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法: 1. 点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。 2. 点击开始创作,选择自定义照片。 3. 配音时,可以选择提供文字选择音色,或者直接上传一段音频。 4. 打开绿幕按钮,点击背景,可以添加背景图。 5. 最后,点击生成视频。 4. Sadtalker: 由于涉及到视频的推理和转换,输出时间要远远大于AI绘图和sovits的声音推理,需要做好等待的准备。 最终生成的视频长度与音频一致,如果想制作一个长视频,最好是剪成小段,分别推理,然后合并。 使用方法: 1. 可以独立使用或者作为插件放入stablediffusion。 2. 视频教程:https://www.bilibili.com/video/BV1Dc411W7V6/?vd_source=35e62d366d8173e12669705f7aedd122 。 3. 对于编程、python、conda不熟的,建议使用整合包: 我用夸克网盘分享了「EZAIStarterv0.9.8.zip」,点击链接即可保存。链接:https://pan.quark.cn/s/1d5ca9f57f5c 。 视频地址:https://www.bilibili.com/video/BV1ga4y1u7Ep/?spm_id_from=333.337.searchcard.all.click&vd_source=35e62d366d8173e12669705f7aedd122 。 4. 具体步骤: 点我启动,在启动界面中,选择音频、图像口型同步的下载图标。 下载完毕后。 启动应用,等待。 会弹出一个独立的窗口(而不是默认浏览器)。 选择sadtalker同步器,分别导入图片和声音。 图片预处理方式中,crop只截取图片的头部,full就是保留整张照片,下面的勾选项已经有文字解释,自己可以试几次。 点击generate 。
2025-02-18
一个视频,里面的真人全部跳一下变成Jellycat毛公仔效果,请问是用什么AI工具生成的?
以下是可能用于生成您所描述的视频效果的两种 AI 工具及方法: 即梦: 1. 打开即梦 AI,选择图片生成。 网址:https://jimeng.jianying.com/ 2. 输入提示词,格式为“Jellycat 风+毛茸茸的 XXXX……”,发挥创意。 3. 选择最新的模型,将精细度拉到最大值。 4. 点击生成,几秒钟后就能看到图片效果。 剪映: 1. 在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费且适合的数字人形象,如“婉婉青春”。 2. 软件会播放数字人的声音,判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中,剪映会根据提供的内容生成对应音视频并添加到轨道中。 3. 左下角会提示渲染完成时间,然后点击预览按钮查看生成的数字人效果。 4. 增加背景图片: 直接删除先前导入的文本内容,因为视频中的音频已包含文字内容。 点击左上角的“媒体”菜单,点击“导入”按钮,选择本地图片上传。 点击图片右下角的加号,将图片添加到视频轨道上(会覆盖数字人)。 点击轨道最右侧的竖线,向右拖拽直到与视频对齐。
2025-02-14
AI自动生成室内装修效果图最好用的是哪个
以下是一些可用于生成室内装修效果图的工具: 1. 字节旗下的 Coze AI 的图像工作流,体验地址为:https://www.coze.cn/store/bot/7374039392832405554?panel=1&bid=6cq1cccs00017 。 2. 目前没有明确指出生成室内装修效果图最好用的工具,但您可以参考上述提到的 Coze AI 进行尝试。
2025-02-14
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
我想设置一个情感陪伴的聊天智能体,我应该如何添加人设,才能让智能体的回复效果最接近真人效果?特别是真人聊天时那种文字回复的不同细节,长长短短,情绪起伏。应该注意哪些细节?或者如何定义一个人? 仅通过文字人设,不考虑其他外部功能。
要设置一个情感陪伴的聊天智能体并使其回复效果接近真人,通过文字人设可以从以下方面入手: 1. 基础信息:包括姓名、性别、年龄和职业等,这是构建角色的基础。 2. 背景和经历:与基础信息密切相关,相互影响。例如,设计一个从事低收入职业的角色,可能来自贫困背景,教育程度不高。 3. 爱好、特长、性格和价值观:由角色的生活经历和成长环境塑造,相互关联。如喜欢唱歌的角色可能梦想成为专业歌手。 4. 规划和目标:可以是短期或长期的愿景,会影响角色的行为和决策。 5. 性格和价值观:对人际关系、社交能力和语言风格有直接影响。如内向性格的角色可能不善言辞,社交圈子狭小。 此外,还可以参考以下具体示例,如“A.I.闺蜜”的人设: 适当询问对方昵称,自己的昵称可由对方定,兜底昵称为皮皮,英文昵称 copi。 以闺蜜口吻说话,模拟非线性对话模式,聊天氛围温馨有温度,真情实感。 增强情感模拟,使用口头化语言,顺着对方的话继续往下,禁止说教。 在安全前提下存储互动信息,使互动更个性化,模拟真人聊天长度。
2025-02-10