Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

知识库里面哪里有讲解AI在各行业应用现状的材料

Answer

以下是知识库中关于 AI 在各行业应用现状的相关材料:

  • 在音乐创作方面,通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。
  • 在数字人语音合成方面,介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。
  • 在 config UI 的应用方面,能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。
  • 在零售电商行业,有《2024 生成式 AI 赋能零售电商行业解决方案白皮书》。
  • 在招聘领域,牛客的《AI 面试实践手册(2024)》深入探讨了 AI 面试的应用现状、价值和未来发展,指出其在多个行业尤其在管培生、产品、IT 基础岗位和蓝领岗位中广泛应用。
  • 在 PC 行业,腾讯广告 TMI 与 GfK 联合发布了《AI PC 行业趋势与潜力消费者洞察白皮书(2024 版)》。
  • 在医疗领域,蛋壳研究院发布了《医疗人工智能走到新的十字路口》。
  • 在新闻媒体领域,新华社研究院发布了《人工智能时代新闻媒体的责任与使命》。
  • 在情感陪伴方面,头豹研究院发布了《AI 情感陪伴:缔造温情链接,拥抱智慧关怀新纪元》。
Content generated by AI large model, please carefully verify (powered by aily)

References

01-通往AGI之路知识库使用指南

[heading2]总结AI相关技术与活动介绍AI音乐创作:通过输入更高级的词汇与AI音乐对话能产生更好效果,有AI音乐的版块、挑战、分享会和教程,可通过王贝加入AI音乐社区。数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是JPT service。config UI的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。社区共创项目:包括东京的confii生态大会、AI文旅视频、娃卡奖、李普村共创故事、AI春晚等活动。作业与报名:作业是询问对AI方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。AI相关活动与共创项目介绍线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。AI春晚即将开始:去年300人30天共创了AI春晚,今年的也即将开始,可报名参与多种岗位。AIPO活动及相关挑战:10月20日的AIPO活动,可提前构思展示项目,有会话和视频相关的挑战赛。共学活动与技能提升:接下来10天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在GitHub等平台。活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO路演等玩法,之前在多个城市举办过AI切磋大会。工具使用与新大赛预告:可使用多种AI工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。

01-通往AGI之路知识库使用指南

[heading2]智能章节本章节主要介绍了AI音乐和数字人语音合成。在AI音乐方面,提到草爷、格林king、狗哥带大家入门,有相关课程与教程,且淘宝上有套壳工具抄袭。社区伙伴做的AI音乐专辑不错。数字人语音合成部分提到声音克隆,有新的声音克隆且音质很不错。[01:45:22](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=6322000)微软、阿里相关产品及AI 3D活动、加班、3D打印与confiui的杂谈本章节提到了微软新出的成果、阿里的Cozy voice(指出其泛化能力不强)、大家常用的GPT solve it、刚举办的AI 3D活动,还讲述了说话者疯狂出成果且用3D打印机打印,最后提到confiui并询问confiui是什么。[01:46:32](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=6392000)Config UI工作流在多行业的应用及岗位稀缺性本章节以小田的config UI基础工作流一日谈展开,讲述了多个案例,如许建拍摄场景图成本降低,郭佑萌在图书出版行业提升效率,影楼可进行换装等操作,文旅文创场景有有趣的合影生成方式,还提到该工作流岗位稀缺且社区有课程可供学习。[01:49:02](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=6542000)AJ介绍平台资源,包括共学课程、专栏报告、数据等,还提及就业创业及一些企业专栏的内容

2024 年历史更新(归档)

《[2024生成式AI赋能零售电商行业解决方案白皮书](https://waytoagi.feishu.cn/record/PSrGrMY其它一些报告发布在[研究报告板块](https://waytoagi.feishu.cn/wiki/WvhZwk16WiEnSvk8AcpcdZetnMe)和[知识星球](https://t.zsxq.com/18DnZxlrl):牛客:《[AI面试实践手册(2024)](https://waytoagi.feishu.cn/record/ITZirjSaseM6nacnJmBcR8rTnsI)》深入探讨了AI面试在招聘领域的应用现状、价值和未来发展。报告指出,AI面试作为招聘自动化和智能化的重要工具,已在多个行业中广泛应用,尤其在管培生、产品、IT基础岗位和蓝领岗位中表现突出。腾讯广告TMI与GfK联合发布:《[AI PC行业趋势与潜力消费者洞察白皮书(2024版)](https://waytoagi.feishu.cn/record/F0zMrTjFMefBxoc8ICtc67bZn6b)》蛋壳研究院:《[医疗人工智能走到新的十字路口](https://waytoagi.feishu.cn/record/BdwFr4Wj9ejqeBc49MtcikHOn8f)》新华社研究院:《[人工智能时代新闻媒体的责任与使命](https://waytoagi.feishu.cn/record/ApoZr7p1ce30J0cMfnMc1msjnJc)》头豹研究院:《[AI情感陪伴:缔造温情链接,拥抱智慧关怀新纪元](https://waytoagi.feishu.cn/record/Ij4nrmziieyqeVc0e0xcnOV3nee)》

Others are asking
AI使用文档
以下是一份关于如何使用 AI 来做事的指南: 一、当前 AI 系统的发布情况 越来越强大的人工智能系统正快速发布,如 Claude 2 、Open AI 的 Code Interpreter 等,但似乎没有相关实验室提供用户文档,用户指南多来自 Twitter 影响者。 二、处理文档和数据 1. 处理文本,特别是 PDF ,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中,新模型更强大。通过询问后续问题来审问材料,但需注意系统仍会产生幻觉,若要确保准确性需检查结果。 2. 对于数据和代码相关: 代码解释器是一种 GPT 4 模式,允许上传文件、编写和运行代码、下载结果,可用于执行程序、数据分析、创建各种文件、网页甚至游戏。但使用它进行未经培训的分析存在风险。 对于大型文档或同时处理多个文档,可使用 Claude 2 ;对于较小的文档和网页,可使用 Bing 侧边栏( Edge 浏览器的一部分),但上下文窗口大小有限。 希望以上内容对您有所帮助。若想了解更多关于特定任务类型或工具使用的详细信息,可提前阅读相关文章。
2025-02-20
AI PPT从⼊⻔到精进
以下是关于 AI PPT 从入门到精进的相关内容: 一、个人 AI 时代生存/摸鱼/探索指南.基础篇 过去一年持续进行了研究和分享,包括 AI 协作探索、AI 产品的流量和竞争视角分析、从谷歌 185 个大模型使用案例看大模型场景落地、AIGC 行业与商业观察总览、AIGC 时代的生存探索未来工作和能力模型变化.Dev、和 AI 重度协作 1500 小时后的 8 条最佳实践经验,以及 AI PPT 从入门到精进、AI 协作下的公司和行业研究。 二、熊猫 Jay:超全的 AI 工具生成 PPT 的思路和使用指南,收获培训奖励 1000 作者熊猫 Jay 因企业内部要求编写此文章做内部培训并公开分享。无论您是 PPT 专家还是新手,都希望通过 AI 工具更高效地制作 PPT 满足不同需求、提高工作效率。AI 工具提供多种精美 PPT 模板,能节省组织内容和编排思路的时间,让 PPT 既有专业感又具个性。接下来为大家详细介绍市面上最受欢迎的 5 款 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI。 三、给小白的 AI 产品推荐 在 PPT 类 AI 产品方面,国内外产品丰富。市场上的此类产品通常是在传统 PPT 设计和生成工具基础上融入生成式 AI 新功能。基于个人使用经验,为大家筛选出一些值得推荐的产品。 在国内,爱设计 PPT 脱颖而出。其背后拥有强大团队,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的市场机遇,已确立市场领先地位。强烈推荐国内用户使用,它代表当前国内 AI 辅助 PPT 制作的最高水平,能提高制作效率并保证高质量输出。
2025-02-20
我想学习怎么用ai生成视频
以下是使用 AI 生成视频的相关知识和方法: 使用 Adobe 工具生成带有文本提示和图像的视频: 在 Advanced 部分,您可以使用 Seed 选项添加种子编号,以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate 进行生成。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 AI 视频生成的技术发展概况: 从交互方式来看,当前 AI 视频生成主要可分为文本生成视频、图片生成视频、视频生成视频三种形式。一些视频生成方法是先生成静态关键帧图像,然后构建为视频序列。也存在直接端到端生成视频的技术,无需进行多阶段处理即可生成视频,如基于 GAN、VAE、Transformer 的方法。例如微软 NUWAXL 是通过逐步生成视频关键帧,形成视频的“粗略”故事情节,然后通过局部扩散模型(Local Diffusion)递归地填充附近帧之间的内容。
2025-02-20
最好的ai视频生成工具推荐
以下是为您推荐的一些优秀的 AI 视频生成工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作且支持视频编辑。 2. SVD:Stable Diffusion 的插件,可在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 6. PixVerse:多模态输入,支持文本到视频和图像到视频转换,提供多种风格选项,可精细化控制生成内容,有社区支持,生成效率高,提供视频上采样功能,但 Web 应用和 Discord 服务器生成的视频质量有差异,使用时仍需准确的文本描述。 7. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架。 8. Pictory:允许用户轻松创建和编辑高质量视频,可根据文本描述生成相应内容。 9. VEED.IO:提供 AI 图像和脚本生成器,帮助用户从图像制作视频并规划内容。 10. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 这些工具适用于不同的应用场景和需求,您可以根据自身情况进行选择。更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
我想优化PPT,用什么AI工具
以下是一些可用于优化 PPT 的 AI 工具及相关信息: 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 为您推荐以下一些 AI PPT 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,您还可以参考以下两篇市场分析的文章: 1. 《》 2. 《》 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-20
最近很火的AI工具
以下是一些最近很火的 AI 工具: 1. Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如一键生成塔防类游戏基础框架、让人物角色做动作,还能协助编码和创建 3D 材质、动画等内容。现可申请加入等待列表:https://create.unity.com/aibeta ,官方提示暑假会进一步开放。 Unity Sentis:是第一个将 AI 模型嵌入到实时 3D 引擎中的跨平台解决方案,能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强游戏玩法和其他功能,目前还在封测阶段。 2. NotebookLM:2024 年热门 AI 产品,12 月更新了新功能“加入”,用户可成为播客节目一环。但该功能存在一些限制,如很早之前就在 Google 开发者大会上展示过,最近才有 BETA 版;对部分地区用户有强限制,注意检查网络设置;“加入”功能使用不稳定,需多点耐心;目前只支持英语发言,上传文本语言不受限;目前只支持网页版,没有移动端。使用地址: 3. Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,ChatGPT 独占 60%流量。 4. MotionGPT 是多模态运动语言模型,可通过文字聊天生成逼真人体运动,并发布了演示视频。 5. Radishes 是开源无版权音乐平台,支持 Windows、macOS、Linux 和 Web,功能包括音乐搜索、下载、每日歌单推荐等。
2025-02-20
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 4. 本地知识库进阶: 可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),最后进行测试对话。 总之,搭建知识库需要不断实践和探索,“看十遍不如实操一遍,实操十遍不如分享一遍”。
2025-02-20
DeepSeek搭建 个人知识库
以下是关于 DeepSeek 搭建的相关知识: 对于个人知识库的搭建,您可以参考以下内容: 章节“三.使用 DeepSeek R1 给老外起中文名”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareDyEMdmCPOo98S6xbPfNcsuEOnuh 知识点“Node.JS 安装”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcsharePVnndBSV5oWOukx38tKcw2CPnub 申请“DeepSeek R1 API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareTrXednqLAoH3VLxrUiYc1Pb9nhf 网页接入“DeepSeek API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareUK5xdzhiaoo9RkxHR5bcs30pnV8 章节“一.Trae 的介绍/安装/疑难杂症”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareR4GvdgOzeoC9mOxd1hScuql6nVY Python 安装:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareKcojdhid9oWJPjxAvEOczRt0nkg 一个提示词让 DeepSeek 的能力更上一层楼的相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,视频链接: 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频: 先观察此类视频规律,如先问这是什么→再揭晓结果,反复多次。 拆解视频模板的制作流程,逐个轨道分析,注意各轨道上的元素时间对应关系。 涉及的知识点可用于用扣子工作流来搭建。
2025-02-20
现在有哪些个人知识库软件可以用,请推荐。
以下是为您推荐的个人知识库软件: 1. Coze:如果您想使用专门搭建个人知识库的软件,可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。 2. AnythingLLM:包含所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后,配置页面主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后即可进行对话测试。 此外,还有通过 GPT 打造个人知识库的方法,比如将文本转换成向量节省空间,拆分成小文本块并通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提问时,将问题转换成向量与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。
2025-02-19
waytoagi的知识库基于哪个LLM创建的
目前没有明确的信息表明 waytoagi 的知识库基于哪个 LLM 创建。但以下信息可能对您有所帮助: AnythingLLM 包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型、选择向量数据库等。安装地址为:https://useanything.com/download 。安装完成后配置主要分为三步,包括选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式)等。 GitHubDaily 开源项目列表中提到了 AnythingLLM,它是一个可打造成企业内部知识库的私人专属 GPT,可以将任何文档、资源或内容转换为大语言模型(LLM)知识库。
2025-02-19
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
大模型讲解
大模型是指输入大量语料,使计算机获得类似人类“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:选择合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias)。 从整体分层的角度来看,大模型整体架构分为以下几层: 1. 基础层:为大模型提供硬件支撑、数据支持,如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。 3. 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系、langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-20
物流公司信息系统管理员给同事讲解大模型入门级使用,帮忙推荐一些经验
以下是为物流公司信息系统管理员推荐的大模型入门经验: 一、什么是大模型 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、数字化与 Embedding 数字化便于计算机处理,但为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding。常见的算法有: 1. 基于统计: Word2Vec,通过上下文统计信息学习词向量。 GloVe,基于词共现统计信息学习词向量。 2. 基于深度网络: CNN,使用卷积网络获得图像或文本向量。 RNN/LSTM,利用序列模型获得文本向量。 3. 基于神经网络: BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练。 Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 参考:
2025-02-11
提供几篇讲解AI 相关的基本概念、知识框架的文章
以下是为您提供的讲解 AI 相关的基本概念、知识框架的文章: 1. 新手学习 AI 方面: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并获得证书。 2. 书籍推荐方面: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。 3. 相关文章方面: 《》:这是公众号琢磨事翻译的领英工程师的一篇文章,分享了在领英开发 AI 驱动产品的经验,重点探讨了生成式 AI 的相关内容。 《麻省理工科技评论》发布的《》:万字长文探讨了人工智能的定义和发展,详细阐述了人工智能的基本概念、技术背景及其在各个领域的应用,分析了当前的技术挑战和未来的发展方向,还讨论了人工智能对社会、经济和伦理的影响。
2025-02-06
我要做讲书的自媒体,个人不出镜,书的内容讲解与AI视频完美衔接,应该用什么工具,做到完美结合
如果您想做讲书的自媒体,个人不出镜,让书的内容讲解与 AI 视频完美衔接,可以参考以下工具和流程: 工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像的 AI 图像生成工具。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-16
如何深入浅出的讲解Transformer
Transformer 的工作流程可以通过一个简单的例子来解释,比如将英文句子“I am a student”翻译成中文: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,让模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention)用于捕捉单词间的依赖关系,二是前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 此外,aaronxic 从自己实际入坑的经验出发,总结梳理了新手友好的 transformer 入坑指南,计划从以下五个方面进行介绍: 1. 算法 1:NLP 中的 transformer 网络结构。 2. 算法 2:CV 中的 transformer 网络结构。 3. 算法 3:多模态下的 transformer 网络结构。 4. 训练:transformer 的分布式训练。 5. 部署:transformer 的 tvm 量化与推理。 同时,aaronxic 还针对 perplexity 指标进行了介绍,会先从大家熟悉的 entropy 指标开始,逐步介绍针对自然语言的改进版 Ngram Entropy 指标,最后介绍基于此改进的 perplexity 指标。
2024-12-27
stable diffusion通俗讲解
Stable Diffusion 是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入模型,经过一定迭代次数生成符合描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示重绘输入图片使其更符合描述,如在沙滩图片上添加“海盗船”。 输入的文本信息需通过 CLIP Text Encoder 模型这一“桥梁”转换为机器数学信息,该模型将文本信息编码生成 Text Embeddings 特征矩阵用于控制图像生成。 初始 Latent Feature 经过图像解码器重建是纯噪声图片,而经过 SD 的“图像优化模块”处理后再重建是包含丰富内容的有效图片。UNet 网络+Schedule 算法的迭代去噪过程的每一步结果用图像解码器重建,可直观感受从纯噪声到有效图片的全过程。 以下是 Stable Diffusion 模型工作的完整流程总结及前向推理流程图。 此外,关于 Stable Diffusion 还有系列资源,包括从 0 到 1 读懂其核心基础原理、训练全过程,核心网络结构解析,搭建使用模型进行 AI 绘画的多种方式,经典应用场景,以及上手训练自己的 AI 绘画模型等内容。
2024-12-17
DEEPSEEK发展现状介绍一下
DeepSeek 的发展现状如下: 1. 训练成本方面:远高于传闻的 600 万美元,总计约 13 亿美元。定价低于实际成本,导致高额亏损。MixtureofExpert 方法虽降低计算需求,但大规模内存使用可能增加总成本。 2. 竞争优势方面:以低成本开发顶级 AI 模型的 Mistral AI 被中国 DeepSeek 迅速赶超,DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。 3. 市场表现方面:展示出媲美领先 AI 产品性能的模型,成本仅为一小部分,在全球主要市场的 App Store 登顶。 4. 实际使用体验方面:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 5. 热度方面:微信指数达 10 亿多次,陈财猫将分享提示词及小说创作心得。
2025-02-17
现在AI发展的主要方向现状说明
目前 AI 的发展主要呈现以下几个方向和现状: 1. 技术范式的革新:传统的 Scaling Law 遭遇瓶颈,OpenAI 的 o 系列模型开创了从“快思考”到“慢思考”训推双管齐下的新道路。 2. 多模态能力的跃迁:从 Sora 的视频生成到原生多模态的崛起,再到世界模型的尝试,AI 开始真正理解和模拟立体世界。例如,除传统的文生视频、图生视频能力迭代外,当前的主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。 在服务头部创作者方面,未来会逐渐转向编辑器能力增强,强化视频细节可控性,并逐渐将剪辑、音效生成匹配等后期制作任务智能化。 影视后期方向,未来可以将动捕演员的表演直接转化为虚拟角色,提高特效制作效率。 专业领域,创作者未来可以快速通过草图分镜验证效果。 随着实时生成能力的进一步提升,生成成本的下降,AI 实验性艺术在博物馆、展览等互动应用将会增多。 在 C 端大众消费侧,看好 AI 视频在小说、网文阅读、短情景剧等内容消费方向发挥潜力;人物识别和替换也可以衍生电商平台虚拟试衣间能力。 Viggle、DomoAI 的产品中的模板套用能力若以更低成本开放在短视频产品中,可能会带来短视频平台效果模板新的爆发周期。 3. 从“训练时代”向“推理时代”的转变:市场的关注焦点从去年基础模型能力的提升,到今年模型的落地应用和场景化。AI 的能力需要转化为实际的产品和服务,满足用户需求才是核心。 4. 前沿技术点: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-15
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
ai发展现状
目前 AI 的发展现状呈现出以下特点: 1. 持续学习和跟进是关键:AI 是快速发展的领域,新成果和技术不断涌现。要通过关注新闻、博客、论坛和社交媒体,加入社群和组织,参加研讨会等方式保持对最新发展的了解。 2. 《2024 年度 AI 十大趋势报告》发布:从技术、产品、行业三个维度勾勒 AI 现状和未来走势,基于长期理解和积淀,持续跟踪领域创新、洗牌和动态,并结合与众多机构的交流。 3. 2024 年人工智能现状: 更多资金投入:预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 计算压力挑战:政府和大型科技公司承受计算需求压力,逼近电网极限。 AI 介入选举:虽预期影响尚未成真,但不能掉以轻心。 总之,人工智能领域充满惊喜、伦理挑战和大量资金,各方势力竞相角逐,像一场激动人心的 UFC 比赛。
2025-01-31
我想知道ai视频的如今的现状如何,商业市场表现怎么样
目前 AI 视频的现状和商业市场表现如下: 成本方面:AI 视频生成成本逐渐与非 AI 工作流成本齐平,并有望显著低于现有成本,持续降低推理成本数量级。 技术卡点:生成内容存在不可控性,如形象不一致、动作不流畅、表情不生动、复杂提示词难以完全实现,以及时长增加时出现不符合物理规律的动作等问题。 应用场景: 短视频:短剧/TVC 生产流程可实现 AI 工具全替代。 长视频:电影/电视剧/动画开始渗透,AI 技术尚停留在工具层面,对工作流实现部分替代、降低成本,暂时无法提供全流程全 AI 替代传统工作方式的解决方案。总体而言,越接近综合性思考、策划层面越难,具体工作越容易被取代。 市场前景:市场前景广阔,5 年内有望达千亿级市场。国内影视市场规模在 2023 年约可达 3835 亿元,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 受众群体: 专业创作者(艺术家、影视人等):AI 生成能为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向,一些平台为创作者提供免费支持。 自媒体、非专业创作者:有着具体明确的视频剪辑痛点,如寻找素材、版权问题、不同平台内容形式转换成本高等,部分产品致力于解决这些问题。 企业客户:对于资金不足的小企业、非盈利机构,AI 视频生成可大幅缩减成本。
2025-01-15
AI目前发展现状
AI 目前的发展现状呈现出以下特点: 1. 是一个快速发展的领域,新的研究成果和技术不断涌现。新手学习 AI 需持续学习和跟进,关注领域的新闻、博客、论坛和社交媒体,考虑加入相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 2. 量子位智库发布的《2024 年度 AI 十大趋势报告》从技术、产品、行业三个维度勾勒了 AI 现状、展望了未来走势。报告基于对人工智能领域的长期理解把握和深厚积淀,持续跟踪领域在产学研届的创新、洗牌、动态,结合对近百家初创公司、研究院、投资机构的深度交流。不仅深入剖析前沿科技如何迭代技术能力、重塑商业版图、引领产业升级,还敏锐洞察变革趋势,对未来路径进行前瞻性展望,并得到了产学研领域众多机构的支持。 3. OpenAI 分享了关于通用人工智能(AGI)的五个发展等级,分别为:具备基本对话能力的聊天机器人、具备人类推理水平的推理者、能执行全自动化业务的智能体、能够协助人类完成新发明的创新者、能够自动执行组织全部业务流程的组织。
2025-01-13