直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何使用AI管理EXCLE数据

回答

以下是一些可用于使用 AI 管理 Excel 数据的工具和方法:

  1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。
  2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件。用户通过聊天形式告知需求,Copilot 会自动完成如数据分析或格式创建等任务。
  3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。
  4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。

这些工具通过 AI 技术提升了 Excel 的数据处理能力,让用户能更高效地进行数据分析和决策。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:关于Excel的AI有哪些?

关于Excel的AI功能,目前有几种不同的工具和插件可以增强Excel的数据处理和分析能力,以下是一些可用的AI工具:1.Excel Labs:这是一个Excel插件,它新增了生成式AI功能,基于OpenAI技术,允许用户直接在Excel中利用AI进行数据分析和决策支持。2.Microsoft 365 Copilot:微软推出的AI工具,整合了Word、Excel、PowerPoint、Outlook、Teams等办公软件,通过聊天的形式,用户可以告知Copilot他们的需求,如数据分析或格式创建,Copilot将自动完成这些任务。3.Formula Bot:Formula Bot提供了数据分析聊天机器人和公式生成器两大功能,用户可以通过自然语言交互式地进行数据分析和生成Excel公式。4.Numerous AI:这是一款支持Excel和Google Sheets的AI插件,除了公式生成外,还可以根据提示生成相关文本内容、执行情感分析、语言翻译等任务。这些工具通过AI技术提升了Excel的数据处理能力,使得用户可以更加高效地进行数据分析和决策。随着技术的不断发展,未来可能会有更多AI功能被集成到Excel中,进一步提高工作效率和数据处理的智能化水平。内容由AI大模型生成,请仔细甄别。

拜登签署的AI行政命令_2023.10.30

Protect against the risks of using AI to engineer dangerous biological materials by developing strong new standards for biological synthesis screening.Agencies that fund life-science projects will establish these standards as a condition of federal funding,creating powerful incentives to ensure appropriate screening and manage risks potentially made worse by AI.Protect Americans from AI-enabled fraud and deception by establishing standards and best practices for detecting AI-generated content and authenticating official content.The Department of Commerce will develop guidance for content authentication and watermarking to clearly label AI-generated content.Federal agencies will use these tools to make it easy for Americans to know that the communications they receive from their government are authentic—and set an example for the private sector and governments around the world.Establish an advanced cybersecurity program to develop AI tools to find and fix vulnerabilities in critical software,building on the Biden-Harris Administration’s ongoing AI Cyber Challenge.Together,these efforts will harness AI’s potentially game-changing cyber capabilities to make software and networks more secure.Order the development of a National Security Memorandum that directs further actions on AI and security,to be developed by the National Security Council and White House Chief of Staff.This document will ensure that the United States military and intelligence community use AI safely,ethically,and effectively in their missions,and will direct actions to counter adversaries’ military use of AI.Protecting Americans’ PrivacyWithout safeguards,AI can put Americans’ privacy further at risk.AI not only makes it easier to extract,identify,and exploit personal data,but it also heightens incentives to do so because companies use data to train AI systems.To better protect Americans’ privacy,including from the risks posed by AI,the President calls on Congress to pass bipartisan data privacy legislation to protect all Americans,especially kids,and directs the following actions:Protect Americans’ privacy by prioritizing federal support for accelerating the development and use of privacy-preserving techniques— including ones that use cutting-edge AI and that let AI systems be trained while preserving the privacy of the training data.

其他人在问
AI写信息报道软件
以下为您推荐一些好用的 AI 写信息报道软件: 1. Copy.ai:是一款功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容,节省写作时间并提高效率。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户提供的信息快速生成高质量新闻内容,适合新闻写作和编辑人员使用。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,随着人工智能技术的迅猛发展,小型企业在 2024 年也迎来了新的应用场景: 1. 聊天机器人:分为信息型和实用型,在企业网站上用于回答常见问题或执行特定任务,能大幅减少客户服务方面的人力成本。 2. AI 撰写内容:如 ChatGPT 等工具,为内容创作有困难或资源有限的小型企业提供高效解决方案,快速生成高质量文本内容。 3. 语音搜索优化:小型企业需优化网站以适应语音搜索普及的趋势,确保内容清晰准确,使用架构标记等技术提高语音助手理解度。 4. 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。 5. 利用 AI 分析客户数据:通过机器学习算法进行预测性分析,发现模式和趋势,为营销活动或个性化体验提供有价值洞见。 6. 社交媒体管理与情绪分析:利用情绪分析工具深入了解客户反馈,调整产品和营销策略。 以下是 1 月 3 日的一些 AI 相关资讯: 1. 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率。论文链接:https://arxiv.org/abs/2401.00368 。 2. Pile:开源的 AI 日记软件,界面美观,集成 OpenAI API,有 AI 搜索和问题解答功能,保证安全隐私。下载链接:https://udara.io/pile/ ,项目源码:https://github.com/UdaraJay/Pile 。 3. VCoder:视觉编码器增强模型,增强 LLM 的视觉理解和分析能力,处理分割图和深度图,改善对象感知,在对象识别任务中表现优于 GPT4V。项目链接:https://praeclarumjj3.github.io/vcoder/ ,代码库:https://github.com/SHILabs/VCoder 。 4. M2UGen:多模态音乐理解生成模型,能理解音乐风格、乐器、情感,进行音乐问答,根据文本、图像、视频生成音乐,由腾讯与新加坡国立大学开发。 5. DreamTalk:人物头像动画生成开源,使人物照片头像根据音频说话或唱歌,保持嘴型和表情一致。代码库:https://github.com/alivilab/dreamtalk 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-16
AI学习从哪开始?
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-16
我如何才能更快的成为AI领域的专家
要更快地成为 AI 领域的专家,您可以参考以下几个方面: 1. 学习基础:像预医学生一样,从相关的基础课程开始,例如数学、统计学、计算机科学等,为深入学习 AI 奠定坚实的基础。 2. 实践经验:通过参与实际项目、实习或研究工作,积累实践经验,从实践中获取那些书本上没有的知识和直觉。 3. 模型训练:采用堆叠模型的训练方式,而非单纯依赖大量数据和生成模型。例如,先训练基础学科的模型,如生物学、化学等,再添加特定领域的数据点。 4. 开发特定领域模型:创建专门针对特定领域的 AI 模型,如医疗保健领域的专家 AI,而不是追求全能的通用 AI。 5. 多样化方法:在编码、数据和测试方面采用多样化的方法,创建多个专家 AI 并在需要时提供不同意见。 6. 现实世界互动:让人类专家配备可穿戴设备,收集现实世界的互动数据供 AI 学习,使 AI 接触到多样化的视角,避免偏见。 总之,成为 AI 领域的专家需要系统的学习、丰富的实践和不断的探索创新。
2024-11-16
有没有用Stata的最小二乘法处理相关的AI
目前在 AI 领域中,较少直接将 Stata 的最小二乘法与 AI 进行特定的结合应用。Stata 的最小二乘法主要用于传统的统计分析,而在 AI 中,更多采用的是基于机器学习和深度学习的算法和模型。但如果您是在处理某些与数据相关的任务,最小二乘法的原理和思路在一定程度上可能对您理解和设计 AI 中的数据处理方法有所帮助。
2024-11-16
有没有自动AI样机的工具 mockup
目前在 AI 领域,暂时没有特别知名的专门用于生成自动 AI 样机的工具 mockup。但随着技术的不断发展,未来可能会出现相关的创新工具。您可以持续关注 AI 技术的最新动态,以获取相关信息。
2024-11-16
2024年11月,AI圈都发生了哪些大事
2024 年 11 月,AI 圈发生了以下大事: 11 月 1 日: 《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 11 月 7 日: 《》Marc Andreessen 强调,真正的变革性技术必须从产品设计之初就深度融入,而不是简单地在现有产品上添加 AI。他指出,AI 作为一种新型计算机,能够以概率方式输出结果,带来无限创造力。AI 将在多个行业引发重大变革,尤其是在生物科技和金融等领域,初创公司有机会重新定义产品类别,摆脱传统束缚。 《》前 OpenAI 研究员 Alexey Guzey 在 2017 至 2024 年间对人工智能(AI)发展的看法变化。他最初认为实现通用人工智能(AGI)需要数十年,但后来逐渐意识到大型语言模型(LLM)实际上并不具备真正的思考能力。阅读几年间他的心路历程,是非常好的求索经历。 《》在 10 月的总结中,Orange AI 反思了创业的艰辛,强调创业最难的是人和信任。创业者需找到优秀团队,并相信自己和他人。此外,利益分配在企业盈利后成为关键问题,需要坦诚沟通。10 月关注了 AI 搜索、音频、视频生成和编码等主题,并参与了多个活动,收获颇丰。 此外,还有关于 AI 在未来一年的 10 个预测: 一个主权国家向美国大型人工智能实验室投资 100 亿美元以上,需要国家安全审查。 没有任何编码能力的人独自创建的应用程序或网站将会迅速走红(例如 App Store Top100)。 案件开始审理后,前沿实验室对数据收集实践实施有意义的改变。 由于立法者担心权力过度,欧盟人工智能法案的早期实施最终比预期更为缓慢。 OpenAl o1 的开源替代品在一系列推理基准测试中超越了它。 挑战者未能对 NVIDIA 的市场地位造成任何重大打击。 由于公司难以实现产品与市场的契合,对人形机器人的投资水平将会下降。 苹果设备上研究的强劲成果加速了个人设备上 AI 的发展势头。 人工智能科学家撰写的研究论文被大型机器学习会议或研讨会接受。 一款以与 GenAI 元素交互为基础的视频游戏将取得突破性进展。
2024-11-16
如何让AI帮忙做WORD或者EXCLE
以下是让 AI 帮忙处理 WORD 或 EXCEL 的相关信息: 对于 WORD 文档处理,有以下工具和资源可供利用: Grammarly、Orchard、Lex 等工具可以帮助学生克服写作难题,提升写作水平。 Tome 和 Beautiful.ai 可以协助创建演示文稿。 对于 EXCEL 数据处理和分析,目前有以下几种工具和插件: Excel Labs 是 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 Microsoft 365 Copilot 整合了 Word、Excel 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务。 Formula Bot 提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI 是支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 WORD 和 EXCEL 中,进一步提高工作效率和智能化水平。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2024-08-17
我有很多excle表格要整理,有什么相关的AI或者AI工具可以帮助我
以下是一些可以帮助您整理 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 另外,AIhelper 也是一个不错的工具,其官网为 https://www.aihelper.buzz/ ,能让用户在任何网站上即刻使用 GPT4,满足撰写内容、编写代码、制作 Excel 公式等多种需求,提高工作效率。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-13
怎么在excle中计算rms
在Excel中计算均方根(Root Mean Square, RMS)通常涉及到两步:首先计算数据的平方,然后求平均,最后取平均值的平方根。Excel没有直接计算RMS的函数,但可以通过组合使用其他函数来实现。以下是计算RMS的步骤: 1. 选择数据范围: 选择你想要计算RMS的数据范围。 2. 计算平方: 在数据范围旁边的一个空白单元格中输入公式 `=B2^2`(假设数据在B2单元格),然后将该单元格的公式向下拖动或复制粘贴,以覆盖所有相应数据的单元格。 3. 计算平均值: 在另一个空白单元格中,使用 `AVERAGE` 函数来计算上一步中所有平方值的平均值。例如,如果平方数据在C2:C10,那么公式将是 `=AVERAGE`。 4. 计算平方根: 最后,使用 `SQRT` 函数来计算上一步中得到的平均值的平方根。公式将是 `=SQRT`,其中 `average_cell` 是包含平均值的单元格。 5. 简化公式: 你也可以将上述步骤合并为一个更简洁的公式。在一个空白单元格中,输入如下公式:`=SQRT`,这里 `B2:B10` 是原始数据的范围。 6. 拖动填充柄: 如果你有多个数据集需要计算RMS,可以将这个公式向下拖动或复制到其他单元格,Excel会自动调整公式中的单元格引用。 请根据你的实际数据范围调整上述公式中的单元格引用。这样,你就可以在Excel中计算出RMS值了。
2024-05-13
优秀的数据集网站
以下为一些优秀的数据集网站及相关数据集介绍: 文本分类: ,更新日期为 43040,暂时不能下载,已经联系作者,等待反馈。 ,更新日期 43160。 ,更新日期 43160。 ,更新日期 43160。 ,更新日期 43160。 QA: ,更新日期 43721,由微软研究院提供。 ,更新日期未知,由斯坦福提供。 ,更新日期未知,由 Facebook 提供。 文本匹配: ,更新日期 43412,来源为寻药寻医网和国防科技大学信息系统及管理学院。 ,更新日期 42999,由唐善成、白云悦、马付玉及西安科技大学提供。
2024-11-15
我想知道如果我上传给Coze数据库,我的数据安全有保障吗
关于您上传数据到 Coze 数据库的数据安全保障问题,以下是相关信息: 合规说明方面: 不存在产出违法违规内容,包括色情暴力、政治敏感和违法犯罪等。 不存在爬取行为,遵循 robot.txt 爬虫协议,未使用匿名代理。 不存在版权争议问题,未爬取强版权资源、付费内容等。 不存在跨境数据传输,未使用海外 API 和海外模型。 有安全合规声明,作者声明作品没有侵权,作品安全可用且公开可接受。 Coze 数据库的功能特点: 知识库功能不仅支持上传和存储外部知识内容,还提供多样化的检索能力,能解决大模型可能出现的幻觉问题和专业领域知识的不足,显著提升回复准确性。支持从多种数据源上传文本和表格数据,自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则,提供多种检索方式,适应各种使用场景。 数据库具备记忆能力,可以存储和检索用户的交互历史,以提供更加个性化的服务。支持实时更新,确保信息最新。能存储用户的交互历史,包括提问、回答和反馈,用于理解用户需求和优化对话流程,可进行个性化服务和错误纠正与学习。 综上所述,从目前的信息来看,您上传给 Coze 数据库的数据在一定程度上是有安全保障的。但具体情况还需参考 Coze 数据库的最新政策和规定。
2024-11-14
用于分析excel表数据的AI工具
以下是一些可用于分析 Excel 表数据的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户能以聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,Omni 的计算 AI 功能能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
大小模型协同有哪些数据
大小模型协同的数据来源广泛且多样,主要包括以下方面: 大模型方面: 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。 像 GPT3 这样的大模型参数众多。 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。 小模型方面: 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。 大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2024-11-13
现有能分析EXCEL数据的AI
目前能够分析 Excel 数据的 AI 工具和插件主要有以下几种: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 此外,ChatGPT 也可以助力数据分析,其流程为:SQL 分析时,用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行并将结果数据传给 GPT 进行学习和分析,最后输出分析结论和建议,与结果数据一起返回前端页面渲染图表、展示分析结论;个性化分析时,用户上传文件并描述辅助信息,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
2024-11-11
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
推荐几个出海产品,关于AI伴侣和日记管理等服务产品,不限于app
以下是为您推荐的出海产品,包括 AI 伴侣和日记管理等服务产品: 1. AI Diary:这是一款智能日记应用(https://aidiary.io/),采用人工智能技术,能进行真实对话、情绪和写作分析,为用户生成日记摘要和人工智能生成诗歌,为用户提供更深入的反思和个人成长体验。 2. Descript:这是一个多功能工具(https://www.descript.com),可帮助用户进行写作、录制、转录、编辑、协作和分享视频和播客,具有高精度和速度的转录和更正工具,能快速创建社交媒体平台所需的视频剪辑和字幕等。 3. ResearchAIde:这是一个论文分析工具(https://www.researchaide.org),适用于学生、研究人员和商业专业人士,能快速高效地从研究论文中提取并综合相关信息,还可在一个地方整理研究并轻松浏览多篇论文,提供强大的数据提取能力。 4. AI hits:这是一个 AI 生成的音乐排行榜(https://aihits.co/),包含各种由不同 AI 平台和创作者制作的 TikTok 病毒热门歌曲、翻唱、混音和合作作品。 5. Audio Pen:这是一款语音笔记应用(https://audiopen.ai/),可以记录和总结用户想法,适合喜欢通过说话思考的用户,不仅能录下声音,还能转成文字并进行摘要整理。
2024-11-14
比较好用的项目管理的能生成项目进度甘特图的可以免费使用的AI软件有哪些
以下是一些可以免费使用且能生成项目进度甘特图的 AI 软件: 1. 项目管理和任务跟踪工具: Jira:已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度等。 Trello:能辅助项目管理。 2. 文档和协作工具: 微软的 Copilot:可集成到 Office 套件中,为项目文档撰写、编辑等提供助手功能。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 创意生成工具: 文心一格、Vega AI 等:可帮助快速生成创意图像素材。 此外,在绘制逻辑视图、功能视图、部署视图方面,以下工具可供选择: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源的建模语言,与 Archi 工具一起使用可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,支持多种类型图表创建。 7. PlantUML:文本到 UML 的转换工具,可通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。 如果您需要创建项目管理流程图,可按以下步骤使用 Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,您可以快速、高效地创建专业的示意图,满足各种工作和项目需求。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
你是一名课程开发专家,现在要以“AI技术在课程设计中在应用“现金箱管理”,课程对象是银行柜员,时长2小时。
对于“AI 技术在课程设计中应用于‘现金箱管理’,课程对象是银行柜员,时长 2 小时”的需求,目前暂时没有相关的具体内容。但可以考虑以下课程设计思路: 首先,在课程开始的前 30 分钟,介绍 AI 技术的基本概念和在金融领域的应用概况,引出其在现金箱管理中的潜在作用。 接下来的 40 分钟,详细讲解 AI 技术如何优化现金箱管理的流程,例如通过智能监控系统实现对现金箱的实时监控和风险预警。 然后用 30 分钟进行案例分析,展示实际应用中 AI 技术成功提升现金箱管理效率和安全性的案例。 最后 20 分钟,组织学员进行小组讨论和交流,让他们分享自己对 AI 技术应用于现金箱管理的理解和想法,并进行总结和答疑。
2024-11-02
数字资产管理系统
数字资产管理系统是一种用于管理数字资产的系统。以下是一些相关信息: 法规方面:有规定指出,市场因数据集中而产生的不平衡会受到限制。该法规旨在促进数据处理服务之间的切换,涵盖客户终止数据处理服务合同、与不同提供商签订新合同、转移包括数据在内的所有数字资产,并在新环境中继续使用且保持功能等效等方面。数字资产指客户有权使用的数字格式元素,包括数据、应用、虚拟机等。 产品推荐: 特赞发布的 DAM.GPT:帮助企业利用 AI 管理数字资产,可通过拖拽图片入库,AI 识别图片内容,建立关联和标注属性,通过关键词搜索获取资产,进行人肉筛选,对资产进行中心化合规管理和分发,以及二次加工生产。 SnackPrompt:提示词共享社区,筛选和新建功能良好,支持复制到 ChatGPT 中,创建提示词时可设置动态字段,还能选择语言、风格和语气。 HeroPage:提示词分享社区,创建提示词时可设置动态内容,支持直接回填到 ChatGPT 使用。 Builder.io:Figma 插件支持用自然语言生成设计稿并修改,能将生成的设计稿转成前端代码复制。 X Studio3:小冰公司的音乐 AI 工具,上传歌词和音乐可指定 AI 语音唱歌,能对音频自定义。 Playlistable:AI 生成播放列表,链接 Spotify 播放列表并输入心情,自动生成符合心情的播放列表。
2024-10-30
大模型的数字资产管理系统
大模型的数字资产管理系统涉及以下方面: 大模型的整体架构: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集,是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练数据与 llm 不同,用的是图文或声音等多模态的数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。 大模型的通俗理解: 大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练、使用过程: 1. 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 企业大模型的误区: 1. 总想搞一个宏大的产业大模型:目前大模型能力不足以支持,更适合在场景里解决专业问题。 2. 总想用一个万能大模型解决所有企业问题:企业不同场景可能需要不同的大模型。 3. 认为有了大模型,原来的 IT 系统就淘汰了:大模型需要与原业务系统连接协同工作,原数字化搞得越好,大模型效果越好。 4. 认为大模型不用做数字化,直接一步到位弯道超车:企业没有基本的 IT 系统、数字化系统,没有数据积累和知识沉淀,无法做大模型。
2024-10-30
我想做一个知识库管理,用于用户累计只是,在此基础上打造属于用户个人的知识库,通过ai生成用户专属的答案。但是我不知道应该怎么设计这个软件,请为我建议
设计一个用于用户知识累计和生成专属答案的知识库管理软件,您可以考虑以下几个关键方面: 1. 数据存储与架构 选择合适的数据库系统,如关系型数据库(如 MySQL、PostgreSQL)或非关系型数据库(如 MongoDB、Cassandra),以有效存储用户的知识数据。 设计合理的数据表结构,包括用户信息表、知识条目表、知识分类表等,确保数据的组织和关联清晰。 2. 知识录入与编辑 提供直观的用户界面,方便用户录入知识,支持多种格式,如文本、图片、音频、视频等。 具备知识编辑功能,允许用户修改、更新和完善已录入的知识。 3. 知识分类与标签 建立灵活的知识分类体系,让用户能够将知识分类存放,便于查找和管理。 支持用户为知识添加自定义标签,提高知识检索的准确性。 4. 搜索与检索功能 实现强大的搜索功能,支持全文搜索、关键词搜索、模糊搜索等多种搜索方式。 优化搜索算法,确保快速返回准确的搜索结果。 5. AI 模型集成 选择适合的 AI 模型,如自然语言处理模型,用于理解用户的问题和生成答案。 对 AI 模型进行训练和优化,使其能够基于用户的知识库提供准确和有用的回答。 6. 用户权限管理 设定不同的用户权限级别,如管理员、普通用户等,控制用户对知识库的操作权限,保障数据安全。 7. 数据备份与恢复 定期自动备份知识库数据,以防止数据丢失。 提供数据恢复功能,确保在意外情况下能够快速恢复知识库。 8. 界面设计 设计简洁、美观、易用的界面,提高用户体验。 遵循用户习惯和人机交互原则,使操作流程简单直观。 9. 性能优化 对软件进行性能优化,确保在处理大量知识数据时仍能保持高效运行。 10. 测试与迭代 进行充分的测试,包括功能测试、性能测试、用户体验测试等。 根据用户反馈和实际使用情况,不断迭代优化软件功能。 希望以上建议对您有所帮助,祝您成功设计出满足需求的知识库管理软件!
2024-10-29