Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

35岁java后端开发如何转型AI开发

Answer

对于 35 岁的 Java 后端开发人员转型 AI 开发,以下是一些建议:

  1. 利用固定格式文档结合 AI 进行代码开发时,要强调组员的主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。参考链接:https://x.com/dotey/status/1873222368916566381
  2. 借助 AI 编程工具(如 Cursor),熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),通过实践快速掌握技能。将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。参考链接:https://x.com/dotey/status/1873223933777834177
Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

🫧宝玉日报「12月30日」✨✨✨✨✨✨✨✨1⃣️📄Q&A:利用固定格式文档结合AI进行代码开发的可行性分析建议优化:强调组员主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或Prompt辅助代码生成。经验分享:AI编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。🔗[https://x.com/dotey/status/1873222368916566381](https://x.com/dotey/status/1873222368916566381)2⃣️🖥️Q&A:后端Java程序员如何转向LLM方向?行动建议:借助AI编程(如Cursor),熟悉LLM原理,探索复杂Prompt和定制化规则。开展LLM相关的Side Project(如翻译工具、AI对话应用等),通过实践快速掌握技能。将AI当老师,边做边学,获取即时反馈,持续提升。核心建议:行动起来,找到正反馈,坚持使用AI辅助编程。🔗[https://x.com/dotey/status/1873223933777834177](https://x.com/dotey/status/1873223933777834177)3⃣️🔍网友分享:推理模型的使用体验对比

Others are asking
0基础,如何开始学习ai
对于 0 基础学习 AI 的朋友,以下是一份详细的学习指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-30
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,该日记适合纯 AI 小白。其学习模式是输入→模仿→自发创造,学习内容可根据个人兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,且学习资源免费开源。
2025-01-30
能够制作工程预算单的AI推荐
目前在制作工程预算单方面,暂时没有特别突出的专门 AI 工具推荐。但您可以尝试使用一些通用的办公软件,它们可能具有相关的功能或模板,例如 Microsoft Excel 等,通过设置公式和参数来辅助您完成工程预算单的制作。
2025-01-30
我想要一个能够计算工程预算的软件或者AI,请问我推荐
目前市面上有一些能够计算工程预算的软件和具备相关功能的 AI 工具。例如广联达,它是一款在建筑工程领域广泛使用的预算软件,功能较为全面和专业。还有鲁班软件,也在工程预算计算方面有一定的优势。 此外,一些新兴的 AI 工具如某些基于大数据和机器学习算法的在线预算计算平台,能够根据您输入的工程参数和要求,快速生成较为准确的预算结果。但在选择时,您需要考虑软件的适用性、价格、操作便捷性等因素,以满足您的具体需求。
2025-01-30
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
学习AI技术从哪里开始
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究,需要掌握的知识包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用,需要掌握的知识包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-30
Java 程序员如何从 0 到 1 开发微调模型
以下是 Java 程序员从 0 到 1 开发微调模型的步骤和相关信息: 准备工作: 假设您已经按照相关说明准备了训练数据。 使用 OpenAI CLI 进行微调: 1. 明确从哪里 BASE_MODEL 开始的基本模型的名称(如 ada、babbage、curie 或 davinci),您可以使用后缀参数自定义微调模型的名称。 2. 运行相关命令,该命令会执行以下操作: 使用文件 API 上传文件(或使用已经上传的文件)。 创建微调作业。 流式传输事件直到作业完成(这通常需要几分钟,但如果队列中有很多作业或您的数据集很大,则可能需要数小时)。 关于基本模型: 每个微调工作都从一个默认为 curie 的基本模型开始。模型的选择会影响模型的性能和运行微调模型的成本。您的模型可以是 ada、babbage、curie 或 davinci。请访问定价页面了解有关微调费率的详细信息。 微调作业的时间: 开始微调作业后,可能需要一些时间才能完成。在系统中,您的工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。如果事件流因任何原因中断,您可以通过运行特定命令恢复它。工作完成后,它应该显示微调模型的名称。 微调的优势: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调的步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型。 3. 使用您的微调模型。 可微调的模型: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 安装建议: 建议使用 OpenAI 命令行界面。要安装这个,运行相关指令(以下说明适用于 0.9.4 及更高版本。此外,OpenAI CLI 需要 python 3)。通过将相关行添加到您的 shell 初始化脚本(例如.bashrc、zshrc 等)或在微调命令之前的命令行中运行它来设置您的环境变量。 此外,还有“大圣:全网最适合小白的 Llama3 部署和微调教程”,其核心代码全部参考如下开源项目: 。该教程有诸多亮点,如教您如何购买算力,手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调 Llama3 模型等,但不会讲解微调的技术性原理以及文中会用到的 Python 代码,且需要您充值 50 块钱购买算力的预充值。
2025-01-04
我是一个java开发工程师,现在想学习AIGC,请帮我制定一个学习计划,从0到1学习AIGC知识,并提供相关的学习资料
以下是为您制定的从 0 到 1 学习 AIGC 知识的学习计划,并为您提供相关学习资料: 一、学习计划 1. 基础知识学习 了解 AIGC 的基本概念和发展历程。 学习机器学习的基础知识,包括数据获取、特征工程、模型训练、评估与应用等方面。 2. 框架学习 学习 Langchain 框架:了解其丰富的功能,能够根据需求更换模型和实现方式。参考网址:https://python.langchain.com/docs/get_started/introduction.html 掌握 Flask / FastAPI 框架:学习如何与前端或业务后端做接口对接,根据具体场景选择合适的框架。参考网址: FastAPI:https://fastapi.tiangolo.com/zh/ Flask: https://flask.palletsprojects.com/en/2.3.x/ 3. 实践应用 通过实际项目练习,深入理解 AIGC 的应用开发。 二、学习资料 1. 关于机器学习的定义和流程: 卡耐基梅隆大学计算机学院教授汤姆·米切尔(Tom Michell)对机器学习的定义:“计算机程序能从经验 E 中学习,以解决某一任务 T,并通过性能度量 P,能够测定在解决 T 时机器在学习经验 E 后的表现提升” 学习数据获取、特征工程、模型训练、评估与应用等方面的知识。 2. 框架学习资料: Langchain 框架:https://python.langchain.com/docs/get_started/introduction.html Flask 框架:https://flask.palletsprojects.com/en/2.3.x/ FastAPI 框架:https://fastapi.tiangolo.com/zh/ 希望这个学习计划和学习资料对您有所帮助,祝您学习顺利!
2024-08-17
我能用AIAgent,做什么关于Java程序员可用的工具?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent 包括以下几个概念: Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来,有三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),期间会分析历史对话,变更人物关系(亲密度、了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,并且有概率主动聊天(与亲密度正相关,跳过夜间时间)。 对于 Java 程序员来说,可以利用 AI Agent 中的工具调用功能,例如对相关技术文档的搜索和检索,以辅助解决编程中的问题;也可以借助其分析和理解能力,对代码逻辑进行审查和优化建议等。
2024-08-09
Java学习路线
Java学习路线 Java是一种面向对象的编程语言,广泛应用于开发各种应用程序,包括Web应用程序、移动应用程序、桌面应用程序等。近年来,Java一直是世界上最受欢迎的编程语言之一。 如果您想学习Java,以下是一条建议的学习路线: 1. Java基础 掌握Java的基本语法,包括变量、数据类型、运算符、控制流语句、函数等。 学习面向对象编程的基本概念,包括类、对象、继承、封装、多态等。 熟悉Java集合框架,包括ArrayList、HashMap、HashSet等。 2. Java开发工具 安装并配置Java开发环境,包括JDK、IDE等。 学习使用Java调试工具,如JDWP等。 熟悉Java版本控制工具,如Git等。 3. Java Web开发 学习HTML、CSS和JavaScript等前端开发语言。 学习Servlet、JSP等Java Web开发技术。 熟悉Java Web框架,如Spring MVC、Struts等。 4. Java高级主题 学习多线程编程、网络编程、数据库编程等Java高级主题。 熟悉设计模式,如单例模式、观察者模式、工厂模式等。 学习Java性能优化技巧。 5. 项目实战 参与开源项目或开发自己的Java项目。 不断练习和积累经验,提高Java编程能力。 以下是一些学习Java的资源: 书籍: 《Java编程入门》 《Java核心技术》 《Effective Java》 在线课程: MOOC平台,如Coursera、edX等。 B站、慕课网等视频网站。 社区论坛: Stack Overflow Reddit Java 学习Java需要时间和精力,但只要坚持不懈,就一定能够掌握这门强大的编程语言。
2024-05-09
waytoagi知识库的对话功能是如何开发的
waytoagi 知识库的对话功能开发涉及以下方面: 1. 提示词的运用:建议从最佳实践中的收录内容开始了解,像李继刚老师的结构化提示词很有意思,使用此类提示词能让模型给出更优质、完整的答案。操作过程中有很多有趣的提示词,如“酷老师”“抬杠高手”等,可点开并复制,将其丢进大源模型对话会有不同效果。近期提示词有升级,李金刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 2. 基于飞书 aily 搭建:在飞书 5000 人大群里内置了智能机器人「waytoAGI 知识库智能问答」,它能自动问答、进行知识搜索、提供文档引用、开展互动教学、更新最新动态、促进社区互动、实现资源共享以及支持多语言问答。用户在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 3. 解决知识库使用问题:整个知识库内容庞大,传统搜索基于关键词及相关性存在不足,需要用更先进的办法如 RAG 技术来解决,在群中提供快速检索信息的方式,使用更加便捷。
2025-01-28
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28
企业AI开发
企业 AI 开发包括以下重要内容: 企业级 AI 应用类型: 智能体应用(Assistant):基于上下文对话,自主决策并调用工具完成复杂任务的对话式 AI 应用。通过简单配置可快速上手实现基本功能,适用于客户服务、个人助理、技术支持等场景。详情参见。 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。用户可通过拖拽节点创建自定义任务流程,适用于 AI 翻译等场景。详情参见。 智能体编排应用:支持多智能体协作的流程式 AI 应用,能编排多个智能体的执行逻辑,适用于综合调研报告、软件开发团队等场景。详情参见。 应避免的人工智能陷阱: 不要以为 AI 可以做任何事,要考虑技术、数据和工程资源的限制,有许多 AI 做不到的事情。 不要以为只雇佣 2 3 个机器学习工程师就可以满足公司的使用场景。机器学习人才很重要,也应让工程师与业务人才交流,寻找可行、有价值的项目。 不要以为 AI 项目一次就能成功,AI 开发通常需要多次尝试。 不要期待直接使用传统的计划流程而不用改变,实际需要和 AI 团队测算时间节点、里程碑与 KPI。 不需要极其优秀的 AI 人才后才启动项目,持续构建团队,普通工程师也能提供有价值和可行的项目。 阿里云百炼: 是基于通义系列大模型和开源大模型打造的一站式大模型服务平台,提供「生成式大模型的应用编排搭建能力」和「企业大模型的全链路训练部署能力」,是企业 AI 时代的首选。 核心能力和优势包括大模型 API 服务(高可用、高性能、高性价比),提供通义闭源和开源系列大模型,以及图片、语音等多模态大模型和国内优质三方大语言模型;AI 应用搭建(可观测、可干预、可追踪),提供 RAG 智能体应用、工作流编排和智能体编排三类使用场景的应用构建能力,以及包含插件能力、运营工具箱等适配工具,实现 10 分钟拖拉拽快速搭建 AI Agent。 提供很多行业级的解决方案,如短剧剧本创作、企业线索挖掘、泛企业 VOC 挖掘等。 体验入口:https://bailian.console.aliyun.com//home (需要登陆阿里云账号,也可以使用支付宝、钉钉、手机号快速注册登陆),建议注册后先进行实名认证,以方便后续体验工作及领取免费学习云资源。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
langchain开发手册
LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具助您轻松构建 RAG 应用。 组件包括: 1. 数据加载器(DocumentLoader):能从数据源加载数据并转为文档对象,文档包含 page_content(文本内容)和 metadata(元数据如标题、作者、日期等)。 2. 文本分割器(DocumentSplitter):将文档分割成多个小文档,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。 3. 文本嵌入器(Embeddings):将文本转为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):存储和查询嵌入,常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器相似度搜索功能检索。 6. 聊天模型(ChatModel):基于大模型如 GPT3 实现文本生成,根据输入序列生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程: 1. 加载数据:根据数据源类型选择合适的数据加载器,如网页可用 WebBaseLoader。 2. 分割文档:根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 3. 转换和存储嵌入:选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:使用向量存储器检索器,传递向量存储器和文本嵌入器对象创建。 5. 创建聊天模型:根据性能和成本选择,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-23
产品开发如何运用好AI
在产品开发中运用好 AI 可以从以下几个方面入手: 1. 辅助精读论文:利用工具如 https://scispace.com 帮助翻译、拆解公式,分析代码等。 2. 编写小脚本:如写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 创作产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 设计和整理调研问卷:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 进行竞品分析:使用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据,如 DAU、用户结构、市场占比等。 6. 解释专业名词:用 ChatGPT 解释很多垂直领域的缩写或行业黑话,并举例、给场景说明。 7. 优化产品逻辑和代码:写完 PRD 后,让 GPT 从产品和研发两个视角写逻辑代码,既能发现产品逻辑表达问题,也方便 QA 同学测试。 对于中小企业创新产品和服务,利用 AI 驱动的产品/服务开发可以: 1. 探索基于 AI 的新产品或服务:调查和分析市场需求,鼓励团队创新思维,开发原型并测试。 2. 利用 AI 技术提升现有产品的智能化程度:识别可优化部分,如添加智能推荐、自动化流程等,改善用户界面和交互体验,基于反馈不断迭代更新。 在阿里巴巴的营销技巧和产品页面优化方面,使用 AI 可以: 1. 进行市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 2. 优化关键词:借助 AI 分析和推荐高流量、高转化的关键词。 3. 设计产品页面:利用 AI 设计工具生成吸引人的页面布局。 4. 生成内容:用 AI 文案工具撰写有说服力的产品描述和营销文案。 5. 优化图像:通过 AI 图像识别技术选择或生成高质量产品图片。 6. 制定价格策略:依靠 AI 分析不同价格点对销量的影响。 7. 分析客户反馈:利用 AI 了解客户需求,优化产品和服务。 8. 提供个性化推荐:基于 AI 根据用户购买历史和偏好进行推荐。 9. 运用聊天机器人:提供 24/7 客户服务,解答疑问,提高满意度。 10. 分析营销活动:借助 AI 了解活动效果,选择更有效的活动。 11. 管理库存:依靠 AI 预测需求,优化库存。 12. 优化支付和交易:分析不同支付方式对交易成功率的影响。 13. 进行社交媒体营销:利用 AI 找到目标客户群体,精准营销。 14. 优化直播和视频营销:通过 AI 分析观众行为,优化内容。
2025-01-20