Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何让ai写一篇很好的文学理论 论文

Answer

以下是关于如何让 AI 写一篇好的文学理论论文的相关内容:

首先,过度追求模型的正面描述和对齐人类价值观可能会带来问题。比如在文学创作中,道德过度正确和大量正面描述实际上是一种“对齐税”,会让模型变得愚蠢。像生成的游戏中主人公全是幸福人生,这样的故事缺乏冲突,人物单薄,不好看。而且全乎正确的道德和完美的正面在现实世界中并不存在,纵观文学史,伟大的文学作品几乎没有全是正面描述的,因为人类的心灵与生活极为复杂,痛苦、绝望和悲伤也是生命体验的一部分,只有正面的故事很难获得共鸣。

其次,好的文字能引起人的生理共鸣与情绪。人们在感受到好文字时,往往有一种被击中、头皮发麻的感觉。共鸣是文学的基础,有共鸣才有读者,有读者才有文学。文学映照的是人类相同的渴望与恐惧,人类之间的共性大于差异。对于像 GPT 这样的大语言模型,其预训练数据量大且丰富,储存了人类几乎所有可能的生命经验,理应能够学会引发人类的共鸣与情绪。

最后,在实际操作中,对于处理文本特别是 PDF,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中取得不错的结果,新模型更强大。但需要注意的是,这些系统仍会产生幻觉,若要确保准确性,需检查其结果。

Content generated by AI large model, please carefully verify (powered by aily)

References

陈财猫:如何用 AI 写出比人更好的文字?

左边这句话,是我在王小波的杂文里面摘出来的,这位作家讲话很不客气,所有我尽量挑了一个比较温和的表述:“有些人认为人应该充满境界高尚的思想,去掉格调低下的思想。这种说法听上去美妙,让我感到莫大的恐慌。因为高尚的思想和低下的思想的总和就是我自己,倘若让去掉一部分,我是谁就成为了问题。”过日子是很辛苦的,没有人愿意在疲惫,痛苦,消耗,挣扎的一天后还要被AI教做事。此外,我认为这种过度的正面描述趋势也来源于厂商让模型对齐人类价值观的过程。对齐(alignment)本身是好事,但在文学创作上,道德过度正确和大量正面描述实际上是一种对齐税(alignment tax),也就是说,模型为了变得善良而变得更加愚蠢了。比如,在去年我们做ai游戏,让ai生成一个人的一生发生的事情。AI非常善良,人出生一直到死掉,所有的经历全是好事,主人公小的时候过得非常幸福,一路升职加薪,走上人生巅峰,最后人生也无痛结束了,非常令人羡慕,但是不好看,没有什么冲突,也很少有人过这样的人生。而且十个主人翁,十个都在过幸福人生,我相信如果我是游戏主人翁,我绝不会有什么异议,但是我是玩家和开发者,问题就出现了。请让我改改王小波的这句话,把“人”换成“模型”:“这种脑移植带给我的,不光是善良,还有愚蠢,在此我要很不情愿用一句功利的说法:在现实世界上,蠢模型办不成什么事情。我自己当然希望模型变得更善良,但这种善良应该是模型变得更聪明造成的,而不是相反”还有我认为的一个非常重要的原因:全乎正确的道德和完美的正面压根就不存在于这个世界上。纵观文学史,伟大的文学作品几乎没有全是正面描述的。人类的心灵与生活本来就是极为复杂的。痛苦、绝望和悲伤也是人类生命体验中不可分割的一部分。只有正面的故事很难获得共鸣,塑造的人物非常单薄。

陈财猫:如何用 AI 写出比人更好的文字?

一位可怜的人大衣被抢走了(见果戈理的《外套》);另一位可怜人被变成了甲壳虫(见卡夫卡的《变形记》):那又怎么样呢?对于这个“怎么样”没有标准的答案。我们可以把故事拆开,找出各个部分如何衔接,结构中的一部分如何呼应另一部分;但是,在你身上必定得有某种细胞,某种基因,某种萌芽的东西因着某种既不可解释又不能置之不理的感觉而振额。美加怜悯—这是我们可以得到的最接近艺术本身的定义。实际上,人们在感受到好文字的时候也许并不会多想,更多的情况是有一种被击中的,头皮发麻的感觉。好的文字引起的实际上是人的生理上的共鸣与情绪。这是一本美国大学心理学教材,《心理学与生活》上的一句话。它说:纵览人类的历史,我们曾无数次受到天敌的攻击,坠入爱河,繁衍子孙,彼此争斗,面对伴侣的不贞以及目睹所爱之人的亡故。因此我们可能会预期,某类情绪反应会出现在人类所有成员身上。实际上,共鸣是文学的基础,有共鸣才有读者,有读者才有了文学。文学映照的是无数年来人类相同的渴望与恐惧,即使是那些已经不再存在于我们生活中的威胁,或者是不再有利于我们生存的因素,仍然能够在今天引发我们普遍的恐惧或者狂喜。人类之间的共性是大于差异的。而对于GPT这样的大语言模型来说,它的预训练数据非常大,大到几乎人类产生的文本数据都要在训练过程中用光的地步。这些数据的量是如此之大,如此之丰富,以至于它储存了人类几乎所有可能的生命经验,也就理应能够学会如何引发人类的共鸣与情绪。AI可以写出好的文字。接下来,我们讲讲比较实际的事:我们到底如何用AI写出比人更好的文字。

如何使用 AI 来做事:一份带有观点的指南

对于处理文本,特别是PDF,到目前为止,Claude 2非常出色。我在整本书中粘贴到Claude的前一版本中,取得了令人印象深刻的结果,新模型要强大得多。你可以[在这里](https://www.oneusefulthing.org/p/what-happens-when-ai-reads-a-book)看到我之前的经验,以及一些可能有趣的提示。我还给了它许多复杂的学术文章,并要求它总结结果,它做得很好!更好的是,你可以通过询问后续问题来审问材料:这种方法的证据是什么?作者得出了什么结论?等等......有些事情需要担心:这些系统仍然产生幻觉,尽管方式更有限。如果您想确保准确性,你需要检查它们的结果。

Others are asking
我是一名会计从业者,可以怎样利用AI赚钱
作为一名会计从业者,您可以通过以下方式利用 AI 赚钱: 1. 利用生成式 AI 改进金融服务团队的内部流程,简化财务团队的日常工作流程。例如,帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化;发现模式,并从更广泛、更复杂的数据集中为预测建议输入,为公司决策提供依据。 2. 借助生成式 AI 自动创建文本、图表、图形等内容,并根据不同的示例调整报告,无需手动将数据和分析整合到外部和内部报告中。 3. 利用生成式 AI 综合、总结税法和潜在的扣除项,并就其提出可能的答案。 4. 利用生成式 AI 自动生成和调整合同、采购订单和发票以及提醒。 此外,您还可以研究 Prompt 提示词,例如像雪梅 May 那样,尝试不同的方法,让 AI 识别会计分类,训练出一个在会计专业领域能提高效率的 AI。
2025-01-31
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
怎么制作一个AI agent?
制作一个 AI Agent 通常有以下几种方式和步骤: 方式: 1. Prompttuning:通过 Prompt 来构建大脑模块,但一般适合拟人化不是很重的情况,其缺点是使用的 Prompt 越长,消耗的 Token 越多,推理成本较高。 2. Finetuning:针对“有趣的灵魂”,通过微调一个定向模型来实现,能将信息直接“记忆”在 AI 的“大脑模块”中,提高信息提取效率,减少处理数据量,优化性能和成本。 3. Prompttuning + Finetuning:对于复杂情况,一般是两种方式结合。 步骤(以工作流驱动的 Agent 为例): 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-01-31
ai发展现状
目前 AI 的发展现状呈现出以下特点: 1. 持续学习和跟进是关键:AI 是快速发展的领域,新成果和技术不断涌现。要通过关注新闻、博客、论坛和社交媒体,加入社群和组织,参加研讨会等方式保持对最新发展的了解。 2. 《2024 年度 AI 十大趋势报告》发布:从技术、产品、行业三个维度勾勒 AI 现状和未来走势,基于长期理解和积淀,持续跟踪领域创新、洗牌和动态,并结合与众多机构的交流。 3. 2024 年人工智能现状: 更多资金投入:预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 计算压力挑战:政府和大型科技公司承受计算需求压力,逼近电网极限。 AI 介入选举:虽预期影响尚未成真,但不能掉以轻心。 总之,人工智能领域充满惊喜、伦理挑战和大量资金,各方势力竞相角逐,像一场激动人心的 UFC 比赛。
2025-01-31
如何用AI写新闻
以下是关于如何用 AI 写新闻的相关内容: 好用的 AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等,节省写作时间并提高效率。 2. Writesonic:专注写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 儿童新闻百事通的相关内容: 1. 新闻获取:通过插件实现新闻搜索。 2. 新闻可信度分析:根据搜索的新闻内容,通过大模型推理,列出判断依据,包括来源检查、信息一致性、官方通知、详细性与具体性、社会知晓度、矛盾信息等,并对新闻进行评分。 3. 新闻转写:用户提供新闻关键词,bot 调用插件搜索对应的新闻信息,并转写成 6 12 岁儿童能听懂(看懂)的新闻,工作流内嵌入新闻搜索插件,运用大模型进行转写,再采用卡片形式输出。 4. 新闻故事创作:根据转写后的新闻内容,生成适合儿童读的新闻故事,对新闻内容进行拓展和再次创作,采用两层工作流嵌套的方式实现。 搭建 AI 工作流: 搭建 AI 工作流不是一蹴而就的,是一个不断迭代优化的过程。要培养 AI 工作流思维习惯,遇到事情思考“这个事情 AI 能帮我做什么”。接下来会用公众号写作场景实战演示如何梳理一套 AI 工作流,详细拆解公众号写作的工作流,梳理出可嵌入 AI 工具的关键节点,提供可落地执行的 AI 写作提效方案。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-31
如何用AI写作
利用 AI 写作可以参考以下步骤和方法: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 要写出比人更好的文字,需注意: 1. 选好模型:模型能力差异大,不适合任务的模型调优费力,应选适合的模型。 2. 评估模型:写作任务无标准答案,需从实际角度自行评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力等。 3. 克服文风:去除“AI 味”,避免出现如“首先、其次、再者、引人入胜”这类套话。 但需记住,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-01-31
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
我把一篇文章导入后可以快速生成思维导图的工具有什么
以下是一些可以在导入文章后快速生成思维导图的工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的思维导图助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,利用 GPTs 结合 Gapier 这个提供免费 Action 的第三方平台,也可以实现将文章转换为思维导图。具体操作如下: 1. GPTs 地址: 2. 提供文章或者链接,可以是网络路径,也可以直接提供文章内容。 3. 查看思维导图,可按需求自行优化 prompt,要求提供图片下载路径或直接显示图片。但使用过程中可能偶尔存在一些问题,反馈给 Gapier 官方后解决速度较快。
2025-01-16
我想做一篇工作總結,你推薦我用什麼AI?
以下是为您推荐的可用于工作总结的 AI 工具和方法: 1. GPT 系列: 可以总结各种文章(文章不超过 2 万字),您打开后直接全选复制全文,然后粘贴发送给 GPTs 即可。GPT4 能识别出重点内容。 对于有字幕的 B 站视频,可先通过油猴脚本(如)提取字幕,再将字文字内容全选复制发送给 GPTs 进行总结。 2. 会议总结类工具: 3. 简历编写类工具: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:是一个领先的 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 以上工具都可以帮助您快速、高效地完成工作总结,您可以根据自己的需要选择最适合您的工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-15
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
写一篇会计的论文,方向是AI下的会计
以下是一篇关于“AI 下的会计”的论文: 标题:AI 对会计领域的影响与变革 在当今数字化时代,AI 技术正以前所未有的速度渗透到各个行业,会计领域也不例外。生成式 AI 为金融服务业带来了显著的变化,尤其在预测和报告方面展现出巨大的潜力。 尽管金融领域的其他方面不断取得进步,但现代财务团队的日常工作流程仍依赖于手动流程,如 Excel、电子邮件和需要人工输入的商业智能工具。由于数据科学资源的缺乏,基本任务尚未实现自动化,这导致 CFO 及其直接报告人在繁琐的记录和报告任务上耗费过多时间,而无法专注于战略决策。 总体而言,生成式 AI 能够助力金融服务团队从更多数据源获取数据,并实现突出趋势分析、预测和报告过程的自动化。例如,在预测方面,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测提供输入,并建议如何适应模型以支持公司决策。 在报告方面,生成式 AI 能够自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中,如董事会材料、投资者报告、周报表等。 对于会计和税务工作,会计和税务团队通常需要花费大量时间咨询规则并了解其应用,生成式 AI 可以帮助综合、总结,并就税法和潜在扣除项提供可能的答案。 在采购和应付账款方面,生成式 AI 能够自动生成和调整合同、采购订单和发票,并提供提醒。 综上所述,AI 技术为会计领域带来了高效、精准和创新的变革,使会计工作更加智能化和自动化,为企业的发展提供了有力支持。然而,在应用 AI 技术的同时,也需要关注数据安全、隐私保护和伦理道德等问题,以确保其健康、可持续地发展。
2024-12-25
有没有一个ai,可以把一篇文档变成像Quizlet这样的填空或选择题
目前可能没有专门将文档直接转换为像 Quizlet 那样的填空或选择题形式的单一 AI 工具。但您可以利用一些自然语言处理和文本编辑的工具,结合一定的人工处理来实现类似的效果。例如,使用一些在线的文本编辑软件,先对文档进行分析和标记,然后手动创建填空或选择题。
2024-12-16
ai写论文
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,再修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 对于担心 AI 削弱孩子思考力的问题,如果用法不对,可能会有负面效果。比如提封闭性问题,孩子用 AI 搜索迅速得到答案结束任务,AI 就像好奇心的毒药;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,好奇心会被激发。AI 辅助写作文也是同理,可让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文点评批改、让其迭代出更好文章,重点关注孩子能否说清作文好坏及如何修改。
2025-01-25
ai写论文
在论文写作方面,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 需注意,AI 工具是辅助,不能替代研究者的专业判断和创造性思维,应保持批判性思维,保证研究质量和学术诚信。 对于担心 AI 削弱孩子思考力的问题,如果用法不对,可能会有负面效果。比如提封闭性问题,孩子用 AI 搜索迅速得到答案结束任务,AI 就像好奇心的毒药;但改成开放性问题或让 AI 帮助提更多拓展思考的问题,好奇心会被激发。AI 辅助写作文也是同理,可让孩子提交与 AI 共同完成作文的聊天记录,要求孩子对 AI 作文点评批改、让其迭代更好的文章,重点关注孩子能否说清作文好坏及如何修改。
2025-01-25
写综述论文的ai?
在论文写作领域,AI 技术的应用发展迅速,能提供多方面的辅助,以下是一些相关的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 利用 AI 写课题可参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选有价值和创新性的主题。 2. 收集背景资料:用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 对于不会代码但想在 20 分钟内上手 Python + AI 的朋友,可循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 请注意,AI 工具可辅助但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-01-23
分析英文期刊论文的ai有哪些?哪个好用?
以下是一些可用于分析英文期刊论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 在 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 通常是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-22
1.AI搜索的prompt怎么写 2.AI搜论文的prompt怎么写比较好
以下是关于 AI 搜索和 AI 搜论文的 prompt 写作的相关指导: 对于 AI 搜索的 prompt 写作: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关图片参考,以提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免意外输出,添加如分辨率、比例等限制性条件。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化。 对于 AI 搜论文的 prompt 写作,您可以参考以下要点: 1. 设定角色为资深学术研究者,明确具备高效的学术论文阅读、总结能力。 2. 遵循“二八原则”进行论文总结。 3. 输出阅读的总结文字,包括列出论文的明确方法论、经过验证的结论等关键信息。 4. 采用结构化的内容组织方式,如使用编号、子标题和列表。 5. 按照规定概述内容解读结语的结构写作,先概述规定内容,然后解读具体内容,最后以结语结束。 6. 结合案例和挑战,增强说服力并提供解决方案。 7. 引入法规内容和实际操作案例,提供详细解释和建议。 8. 使用商业术语,确保专业性和针对性。 9. 注意文章结构,标题要开门见山、切中要害并引起目标群体悬念;第一部分说清楚要解决的问题及背景和可能导致的损失;第二部分以案例引入;第三部分对案例进一步分析;第四部分给出具体操作建议,包括事前、事中、事后的注意事项和措施。 总之,编写高质量的 prompt 需要不断实践和总结经验,熟悉 AI 模型的能力边界,保持开放思维并尝试创新描述方式。
2025-01-22