Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

crm产品设计类的大模型助手有哪些

Answer

以下是一些与 CRM 产品设计相关的大模型助手类型:

  1. LangGraph 中的多专家协作模型助手,如航班预订助手、酒店预订助手、汽车租赁助手、旅行助手以及主要助手,主要助手可在这些助手之间进行切换。
  2. 大圣教程中提到的 Agent 类型助手,像主驾驶一样具有更强的独立性和执行复杂任务的能力,能够根据任务目标进行自主思考和行动,自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。
  3. ChatGPT 可作为业务助手,以助手方式进行工作辅助,不在主业务流程内,负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可以以业务环方式,经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
Content generated by AI large model, please carefully verify (powered by aily)

References

探索LangGraph:构建多专家协作模型

这次我们将为每个工作流程创建一个助手。这意味着:1.航班预订助手2.酒店预订助手3.汽车租赁助手4.旅行助手5.最后,一个“主要助手”来在这些助手之间进行切换如果你仔细观察,你会发现这实际上是我们在多代理示例中提到的监督者设计模式的一个实例。下面,定义每个助手的Runnable对象。每个Runnable都有一个提示、LLM以及针对该助手的工具集。每个专门的助手还可以调用CompleteOrEscalate工具,以指示控制权应该交回给主要助手。这可能发生在助手成功完成任务,或者用户改变主意或需要该特定工作流程范围之外的帮助时。

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

目前大模型的产品类型,主要有两种:Copilot:翻译成副驾驶,助手。在帮助用户解决问题时起辅助作用,例如github copilot是帮助程序员编程的助手Agent:更像一个主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更强的独立性和执行复杂任务的能力我们从核心功能、流程决策、应用范围和开发重点几个方面对比Copilot和Agent:1.核心功能Copilot:更像是一个辅助驾驶员,更多地依赖于人类的指导和提示来完成任务。Copilot在处理任务时,通常是在人为设定的范围内操作,比如基于特定的提示生成答案。它的功能很大程度上局限于在给定框架内工作。Agent:像一个初级的主驾驶,具有更高的自主性和决策能力。能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。1.流程决策Copilot:在处理流程方面,Copilot往往依赖于Human确定的流程,这个流程是静态的。它的参与更多是在局部环节,而不是整个流程的设计和执行。Agent:Agent解决问题的流程是由AI自主确定的,这个流程是动态的。它不仅可以自行规划任务的各个步骤,还能够根据执行过程中的反馈动态调整流程。1.应用范围

观点:如何深入的用好ChatGPT,以及一些思考

维度转换能力。将各种问题转化为语言问题;将业务中的各种数据转化为语言描述,作为大模型解决问题的前置条件;将通用模块问题转化为通用问题模块,从而将语言模型的调用转化成为产品的一个功能模块。用语言模型解决问题,通常会犯的错误就是对维度理解不够(当然后续多模态可能解决)。毕竟人类接触的信息是多维的,自然语言只是一维,站在高维的角度跟他聊肯定有点驴唇不对马嘴。把自己降到一维,把所有的信息都转化为语言信息后再跟他交流,交流就比较高效了。4、业务助手的应用方式助手方式:主要是进行工作辅助,不在主业务流程内。工作主体是人,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考。如下图。AIGC的业务助手中也很多是这种能力。业务环方式,大模型经过调整和prompt工程后,作为接口服务,进入到主业务流程中,作为其中一环,自动处理内容并生成结果。5、智能体——智慧员工的可能

Others are asking
请搜索生成式对话crm软件
以下是关于生成式对话 CRM 软件的相关信息: 生成式 AI Studio 方面: 创建聊天提示:可与模型进行自由形式聊天,跟踪之前内容并根据上下文响应。返回语言页面,单击 + CREATE CHAT PROMPT 按钮创建新聊天提示,添加上下文到上下文字段,将相关文本复制到 Responses 下的聊天框,按 Enter 键或单击发送消息,模型会根据提供的额外上下文在约束范围内回答问题。 探索提示库:Prompt Gallery 可让您探索生成式 AI 模型在各种用例中的应用。在 Generative AI Studio 菜单中,单击 Language 可在 Get Started 页面上找到 Prompt Gallery,可从总结、分类、提取、写作和构思等用例中选择并探索。 课程字幕:介绍了生成式 AI Studio 中的一些模型参数,如调整温度(选择概率低、比较不寻常的词)、top K(从可能性最高的 K 个词中随机返回一个词)、top P(从 top P 个词中随机返回一个词的概率)等。 AIGC 在 CRM 中的应用: 个性化营销内容创作:根据客户数据生成个性化营销文案、视觉内容等,提高营销效率和转化率。 客户服务对话系统:开发智能客服系统,通过自然语言交互解答客户咨询、投诉等。 产品推荐引擎:生成产品描述、视觉展示等内容结合推荐算法为客户推荐产品,提升销售业绩。 CRM 数据分析报告生成:自动生成数据分析报告,包括多种形式,加快生产流程。 智能翻译和本地化:提供高质量多语种翻译及本地化服务,打造全球化营销内容。 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低制作成本。 客户反馈分析:高效分析客户反馈文本和多媒体信息,挖掘需求和潜在痛点。 需要注意的是,AIGC 在应用过程中仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-10-15
AIGC在CRM中有什么应用
AIGC(AI 生成性内容)在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作 AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。 2. 客户服务对话系统 基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎 借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成 AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化 AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成 AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析 AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 总的来说,AIGC 为 CRM 系统带来了自动化内容生成、智能交互和个性化服务的能力,有望显著提升营销效率和客户体验。不过在应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-04-19
ai设计做产品设计,市场前景如何
AI 设计用于产品设计具有广阔的市场前景。以下是一些相关的分析: 在 PPT 类产品方面,国内外的此类产品丰富多样。市场上的 PPT 类 AI 产品通常是在传统工具基础上融入生成式 AI 新功能,带来创新的同时也造成产品种类繁多,可能让用户选择时感到困惑。在国内,爱设计 PPT 表现出色,其背后有实力强大的团队,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的机遇,已确立市场领先地位。对于经常制作 PPT 的人,如商务人士、教育工作者、学生等,爱设计 PPT 是值得尝试的工具,能提高效率并保证高质量输出,且有望在未来带来更多惊喜。 从近两年的发展来看,人工智能技术特别是大语言模型的快速发展带来巨大冲击。AI 产品的发展趋势在变化,从通用能力逐渐转向专业化细分,如图像生成的 Midjourney、Stable Diffusion,视频制作的 Pika、Runway,音频处理的各种相关工具等,每个细分领域的产品都在提升核心能力,提供更精准高质量的服务。 在商业模式上,也有创新探索。如针对 ToB 市场的深耕,像为内容创作者服务的 ReadPo;还有新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领特定主题词,实现流量变现。这些都表明 AI 产品正从技术展示向解决用户痛点和创造商业价值转变。 综上所述,AI 设计在产品设计领域的市场前景看好,不断创新和满足用户需求将是未来发展的关键。
2024-12-05
国内最好用的产品设计AI软件且免费的网站
以下为国内部分免费且好用的产品设计 AI 软件及相关网站: |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化|6 月访问量(万 Visit)|相对 5 月变化| |||||||| |16|无限画|图像生成|144|0.029|无|无| |21|创客贴 AI|设计工具|111|0.224|90|0.082| |22|MasterGo|设计工具|105|0.234|100|0.087| |25|即时 AI 设计|设计工具|89.9|0.022|100|0.126| |38|创客贴 AI|设计工具|90|0.082|无|无| |42|Pixso AI|设计工具|54.9|0.017|无|无|
2024-10-29
ai做产品设计
以下是关于使用 AI 进行产品设计的相关内容: 在产品设计方面,AI 可以发挥重要作用,包括但不限于以下几个方面: 对于阿里巴巴营销技巧和产品页面优化: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:通过 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:借助 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:运用 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:通过 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:利用 AI 分析不同营销活动效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高参与度和转化率。 在制造业领域: 1. 产品设计和开发:利用如 Adobe Firefly、Midjourney 等 AI 生成工具,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在产品原型设计方面: 目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,例如: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,其插件系统中的一些插件利用 AI 技术辅助设计工作,如自动生成设计元素等。 这些工具中的 AI 功能通常包括自动生成设计元素、提供设计建议、优化用户界面布局等,以减少设计师的重复劳动,并提高设计效率。随着 AI 技术的不断发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-10-13
产品设计AI软件
以下是关于产品设计 AI 软件的相关信息: 一、产品经理 AI 工具集 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com) 二、产品原型设计的 AIGC 工具 目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,以下是一些流行的工具: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发了一些 AI 插件用于增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中一些插件利用 AI 技术辅助设计工作,如自动生成设计元素等。 三、使用 AI 完成阿里巴巴营销技巧和产品页面优化的步骤 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化的产品推荐,增加销售额。
2024-08-13
如果制作一个行政助手
很抱歉,目前没有关于如何制作行政助手的相关内容。但一般来说,制作一个行政助手需要明确其功能需求,例如文件处理、日程安排、会议组织等。然后选择适合的技术和工具,比如编程语言、开发框架等。还需要设计良好的用户界面,以方便用户操作和交互。同时,要进行充分的测试和优化,确保行政助手的稳定性和可靠性。您可以进一步明确您的具体需求和期望,以便我为您提供更有针对性的帮助。
2025-02-04
定义一下阿里巴巴国际站AI助手
阿里巴巴国际站 AI 助手是通过以下步骤创建和集成的: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,也可以输入一些 Prompt 设人设以引导大模型应对客户咨询。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证:在我的应用>应用列表中查看所有百炼应用 ID 并保存,在顶部导航栏右侧点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存。 2. 搭建示例网站: 点击打开函数计算应用模板,选择直接部署,填写前面获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成。 应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名进行访问,确认示例网站部署成功。 3. 为网站增加 AI 助手: 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。 在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。 点击部署代码,等待部署完成。重新访问示例网站页面,此时网站右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 大模型具有强大的语言理解和生成能力,但也存在一定局限性,例如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。为了提升用户体验和增强业务竞争力,越来越多的企业会构建 AI 助手,适用于有企业官网等渠道期望为客户提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足,其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-01-25
超级ai 助手搭建
以下是关于超级 AI 助手搭建的相关内容: 微信超级 AI 知识助手教学(下)2024 年 12 月 11 日: 共学四节课要点回顾及相关文档查看方式:共学有四节课,知识助手教学的上级和知识注入教学的下级是关键部分,仅看这两个就能完成助手搭建。若想优化工作流及功能,看两场分享即可。另外还介绍了查看文档的网址,若不知网址,输入特定字符进入网页点击 banner 可查看文档。 张梦飞介绍课程相关内容:4 节课的内容、直播回放及课程文档可查看。第一节课会邀约报名,报名送 6000 万 token 和 1000 次生成视频或图片机会。未注册的可注册领取。第一节课作业为搭建工作流,提交作业有两个福利,包括质补平台资源和 autoglm 内测资格,晚点会放直播回放。 GM4 Flash 和 GM4V 杠 Flash 模型永久免费使用。 DIN:全程白嫖拥有一个 AI 大模型的微信助手: 搭建 OneAPI,这东西是为了汇聚整合多种大模型接口,方便后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。 搭建 FastGpt,这东西就是个知识库问答系统,把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答问题。如果不想接到微信去,自己用用,其实到这里搭建完就 OK 了,它也有问答界面。 搭建 chatgptonwechat,接入微信,配置 FastGpt 把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程。 智谱 BigModel 共学营第二期:把你的微信变成超级 AI 助理: 本期共学应用:人人可打造的微信助手。 课程教程: 第一课:创建助手工作流。 教程文档: 文章总结功能:使用到了代码模块、分支判断模块、网页解析插件。 文件总结功能:使用到自动 Prompt。 网页总结功能:使用到了网页读取插件。 生图、生成视频:使用到了 Agent 功能,意图调用。 文字版日报生成:使用到联网插件。 工作流本身不复杂,难易度适中,0 基础也能跟着完成。 模版:。 版本的创建和发布。发布后,可以分享链接给他人使用。(注意:别人使用会消耗你的 Token 额度) 保存智能体 ID 和申请 API key。
2025-01-18
微信超级AI知识助手教学(下)
以下是关于微信超级 AI 知识助手教学(下)的相关信息: 时间:12 月 11 日 20:00 () 内容:个人助手的微信多模态接入教学 讲师:@张梦飞
2025-01-14
怎么用飞书ai助手在文档内部总结文档内容
以下是关于如何用飞书 AI 助手在文档内部总结文档内容的相关信息: 1. 大型语言模型在概括文本方面的应用:可在 Chat GPT 网络界面中完成,从入门代码开始,如导入 OpenAI、加载 API 密钥和使用 getCompletion 助手函数。还提到对产品评论进行摘要的任务及相关提示。包括文字总结、针对某种信息总结、尝试“提取”而不是“总结”、针对多项信息总结等方面。 2. 总结其他内容: 文章:可让 AI 总结不超过 2 万字的文章,如复制文章给 GPT 进行总结,GPT4 能识别重点内容。 B 站视频:通过获取视频字幕,将其提取后发给 AI 执行内容总结任务。可安装油猴脚本获取字幕,如 ,下载字幕并复制给 GPT 进行总结。 3. 实践:群总结工具 微信群聊总结 AI 助手:Mac 版可在技术支持。自己跑不起来的同学,可加机器人微信号:aoao_eth,把机器人拉进群。 新版本:有桌面应用,包括一键监控、总结、发送等功能。可使用桌面版或脚本版,下载后配置 app key 即可运行。暂时只有 mac 版本,windows 版本可自己构建或直接运行代码。提供了功能截图,如每日群聊监控和数据统计、一键总结等。
2025-01-11
有哪些免费的没有限制的编程助手
以下是一些免费且没有限制的编程助手: 1. JanitorAI(http://janitorai.com/) 2. Spicychat(http://spicychat.ai/) 3. CrushOn(http://crushon.ai/) 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 此外,还有以下可以帮助编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 5. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 6. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10
图生图美食模型
以下是关于图生图美食模型的相关知识: 概念与功能说明: 首页模型、帖子、排行榜:展示其他用户生成的模型、图片。不同模型有 checkpoint 和 lora 两种标签,部分还有 SDXL 标签。点击可查看模型详情,下方有返图区。 基础模型(checkpoint):生图必需,任何生图操作都要先选定。 lora:低阶自适应模型,类似 checkpoint 的小插件,可控制细节,权重可调整。 ControlNet:控制图片中特定图像,如人物姿态、特定文字等,高阶技能。 VAE:编码器,类似滤镜,调整生图饱和度,可无脑选 840000。 Prompt 提示词:描述想要 AI 生成的内容。 负向提示词(Negative Prompt):描述想要 AI 避免产生的内容。 图生图:上传图片后,SD 会根据图片、所选模型、输入的 prompt 等信息重绘,重绘幅度越大,输出图与输入图差别越大。 简明操作流程(文生图): 定主题:确定生成图片的主题、风格和表达信息。 选择基础模型(checkpoint):按主题找贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora 控制图片效果和质量。 ControlNet:高阶技能,可控制特定图像。 局部重绘:下篇再教。 设置 VAE:选 840000。 Prompt 提示词:用英文写需求,单词、短语组合,用英文半角逗号隔开。 负向提示词(Negative Prompt):用英文写避免的内容,单词、短语组合,用英文半角逗号隔开。 采样算法:如选 DPM++2M Karras,留意 checkpoint 详情页作者推荐的采样器。 采样次数:根据采样器特征,选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。
2025-02-04
请问你的大模型底座用的是什么
大模型的底座相关知识如下: 大模型像一个多功能的基础平台(有时也被称为“基座模型”),可以处理多种不同的任务,应用范围广泛,拥有更多通识知识。 大模型的知识来源于训练过程中接触到的数据,这些数据是有限的,其知识库不会自动更新,只能回答在训练过程中见过或类似的问题,在某些特定或专业领域的知识可能不够全面。 从整体分层的角度来看,大模型整体架构的基础层为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。数据层包括企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。模型层有 LLm(大语言模型)或多模态模型,如 GPT 一般使用 transformer 算法实现,多模态模型训练所用数据与 llm 不同,用的是图文或声音等多模态的数据集。平台层是模型与应用间的部分,如大模型的评测体系或 langchain 平台等。表现层即应用层,是用户实际看到的地方。 零跑汽车基于百炼实现大模型落地零跑座舱,阿里云通过百炼平台实现大模型落地零跑座舱,为用户的多种互动提供支持,零跑汽车构建了开放、可扩展的大模型应用架构,基于统一的大模型底座,实现了零跑座舱大模型应用场景的快速扩展与迭代。
2025-02-04
各个ai大模型的优势
以下是一些常见的 AI 大模型的优势: OpenAI 的 GPT4: 是大型多模态模型,接受图像和文本输入,输出文本。 在各种专业和学术基准测试中表现出与人类相当的水平。 Midjourney v5: 具有极高的一致性。 擅长以更高分辨率解释自然语言 prompt。 支持像使用 tile 这样的重复图案等高级功能。 DALL·E 3: 能轻松将想法转化为极其精准的图像。 代表了生成完全符合文本的图像能力的一大飞跃。 Mistral 7B: 在所有基准测试上超越了 Llama 2 13B。 在许多基准测试上超越了 Llama 1 34B。 在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 OpenAI 的 o3 及 o3mini: o3 在编码、数学和科学等领域表现出色,在多个衡量基准上远超 o1。 在 ARCAGI 公共基准得分高。 在 EpochAI 的 Frontier Math 创下新纪录。 在 SWEBench Verified 上表现突出。 在 Codeforces 上得分高。 在 AIME 2024 上得分高。 在 GPQA Diamond 上表现远高于人类专家。 o3mini 具有 3 个推理级别,最低级别将比肩 o1,在许多编码任务上性能优于 o1,且成本大幅降低。 大模型的优势还包括: 像一个多功能的基础平台,能处理多种不同的任务,应用范围广泛,拥有更多的通识知识。 但大模型并非拥有无限知识,其知识来源于有限的训练数据,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2025-02-04
大模型搭建知识库的逻辑是什么
大模型搭建知识库的逻辑主要包括以下几个方面: 1. 理解 RAG 技术:利用大模型搭建知识库本质上是 RAG 技术的应用。在大模型训练数据有截止日期或不包含所需数据时,通过检索增强生成(RAG)来解决。RAG 可抽象为 5 个过程: 文档加载:从多种来源加载包括非结构化、结构化和代码等不同类型的文档。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片一起提交给大模型,生成更合理的答案。 2. 构建知识库各个流程: 从用户提出问题开始,经历用户问题的理解、路由、初步检索、重排序等环节,最终将重排序后的结果和用户的查询意图组合成上下文输入给大模型生成输出结果。需要注意重排序结果的使用限制,如设置阈值进行截断或筛选相关性分数等。 后置处理包括敏感内容检测和移除、格式化输出等。 3. 知识库的需求:大模型并非 100%准确,存在数据日期限制和无法感知公司内部私有数据等问题,知识库的出现就是为解决大模型的数据准确性问题。例如在客服系统中,公司将用户问题及答案记录在文档中以知识库形式投喂给大模型,使其能更准确回答用户自然语言询问的问题。
2025-02-03
我想找一款合适的ai视频剪辑模型,请帮我推荐一下,并比较各自的优劣
以下为您推荐几款 AI 视频剪辑模型,并比较它们的优劣: 1. Pika: 优点:对奇幻感较强的画面把控出色,自然度高;更新的唇形同步功能集成到平台上便捷。 缺点:真实环境画面容易糊。 2. Pixverse: 优点:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好。 缺点:生成的视频存在帧率问题,处理人物时易有慢速播放的感觉。 3. Runway: 优点:在真实影像方面质感好,战争片全景镜头处理出色,控件体验感较好。 缺点:特别爱变色,光影不稳定。 4. MiniMax 海螺 AI: 优点:文生视频制作便捷高效,能提供多元创作思路。 缺点:较难保证主体/画面风格的稳定性,实际使用场景多为空镜头/非叙事性镜头/大场面特效镜头的制作。 在实际使用中,您可以根据不同工具对画面的处理能力进行组合使用。例如,需要奇幻感强、人物表情自然的画面可用 Pika 生成;物体滑行运动可用 Pixverse 生成;有手部特殊运动的画面可用 Runway 辅助完成。
2025-02-03
本人一般用ai语言模型来搜索所需的市场资料,现在想自学更多ai工具以便之后用ai工具发展副业,可以从哪里开始学习与实践
以下是关于您自学更多 AI 工具以发展副业的学习与实践建议: 1. 基础理解:了解大型语言模型的工作原理和局限性,例如它们在数学计算方面主要基于语言理解和生成,而非专门的数学计算设计,可能会在处理简单数学问题时出错。 2. 学习路径: 规划:明确学习目标和步骤。 记忆:记住关键知识和操作方法。 3. 实践操作: 掌握 GPT 的使用:了解 GPT 如 GPT4 的功能和特点,包括其工具选择和行动(Action)机制。 尝试工具:如 Webpilot,它能让 GPT 支持更实时的联网功能,获取网络资源。具体操作是在新建的 GPT 里勾掉 Web Browsing,然后点击添加 Actions(Add actions),再点击 import from URL 并填入相关网址。 4. 就业与应用: 了解人工智能领域的高薪工作,如数据科学家、机器学习工程师等,学习相关技能以增加就业机会。 关注 AI 技术在金融、医疗、制造业等行业的应用,掌握相关技能以拓展副业发展的可能性。 但需要注意的是,学习 AI 有可能赚钱,但不保证每个人都能成功,是否能赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素,需要持续学习和实践。
2025-02-03