Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

crm产品设计类的大模型助手有哪些

Answer

以下是一些与 CRM 产品设计相关的大模型助手类型:

  1. LangGraph 中的多专家协作模型助手,如航班预订助手、酒店预订助手、汽车租赁助手、旅行助手以及主要助手,主要助手可在这些助手之间进行切换。
  2. 大圣教程中提到的 Agent 类型助手,像主驾驶一样具有更强的独立性和执行复杂任务的能力,能够根据任务目标进行自主思考和行动,自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。
  3. ChatGPT 可作为业务助手,以助手方式进行工作辅助,不在主业务流程内,负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可以以业务环方式,经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
Content generated by AI large model, please carefully verify (powered by aily)

References

探索LangGraph:构建多专家协作模型

这次我们将为每个工作流程创建一个助手。这意味着:1.航班预订助手2.酒店预订助手3.汽车租赁助手4.旅行助手5.最后,一个“主要助手”来在这些助手之间进行切换如果你仔细观察,你会发现这实际上是我们在多代理示例中提到的监督者设计模式的一个实例。下面,定义每个助手的Runnable对象。每个Runnable都有一个提示、LLM以及针对该助手的工具集。每个专门的助手还可以调用CompleteOrEscalate工具,以指示控制权应该交回给主要助手。这可能发生在助手成功完成任务,或者用户改变主意或需要该特定工作流程范围之外的帮助时。

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

目前大模型的产品类型,主要有两种:Copilot:翻译成副驾驶,助手。在帮助用户解决问题时起辅助作用,例如github copilot是帮助程序员编程的助手Agent:更像一个主驾驶,智能体,可以根据任务目标进行自主思考和行动,具有更强的独立性和执行复杂任务的能力我们从核心功能、流程决策、应用范围和开发重点几个方面对比Copilot和Agent:1.核心功能Copilot:更像是一个辅助驾驶员,更多地依赖于人类的指导和提示来完成任务。Copilot在处理任务时,通常是在人为设定的范围内操作,比如基于特定的提示生成答案。它的功能很大程度上局限于在给定框架内工作。Agent:像一个初级的主驾驶,具有更高的自主性和决策能力。能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。1.流程决策Copilot:在处理流程方面,Copilot往往依赖于Human确定的流程,这个流程是静态的。它的参与更多是在局部环节,而不是整个流程的设计和执行。Agent:Agent解决问题的流程是由AI自主确定的,这个流程是动态的。它不仅可以自行规划任务的各个步骤,还能够根据执行过程中的反馈动态调整流程。1.应用范围

观点:如何深入的用好ChatGPT,以及一些思考

维度转换能力。将各种问题转化为语言问题;将业务中的各种数据转化为语言描述,作为大模型解决问题的前置条件;将通用模块问题转化为通用问题模块,从而将语言模型的调用转化成为产品的一个功能模块。用语言模型解决问题,通常会犯的错误就是对维度理解不够(当然后续多模态可能解决)。毕竟人类接触的信息是多维的,自然语言只是一维,站在高维的角度跟他聊肯定有点驴唇不对马嘴。把自己降到一维,把所有的信息都转化为语言信息后再跟他交流,交流就比较高效了。4、业务助手的应用方式助手方式:主要是进行工作辅助,不在主业务流程内。工作主体是人,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考。如下图。AIGC的业务助手中也很多是这种能力。业务环方式,大模型经过调整和prompt工程后,作为接口服务,进入到主业务流程中,作为其中一环,自动处理内容并生成结果。5、智能体——智慧员工的可能

Others are asking
请搜索生成式对话crm软件
以下是关于生成式对话 CRM 软件的相关信息: 生成式 AI Studio 方面: 创建聊天提示:可与模型进行自由形式聊天,跟踪之前内容并根据上下文响应。返回语言页面,单击 + CREATE CHAT PROMPT 按钮创建新聊天提示,添加上下文到上下文字段,将相关文本复制到 Responses 下的聊天框,按 Enter 键或单击发送消息,模型会根据提供的额外上下文在约束范围内回答问题。 探索提示库:Prompt Gallery 可让您探索生成式 AI 模型在各种用例中的应用。在 Generative AI Studio 菜单中,单击 Language 可在 Get Started 页面上找到 Prompt Gallery,可从总结、分类、提取、写作和构思等用例中选择并探索。 课程字幕:介绍了生成式 AI Studio 中的一些模型参数,如调整温度(选择概率低、比较不寻常的词)、top K(从可能性最高的 K 个词中随机返回一个词)、top P(从 top P 个词中随机返回一个词的概率)等。 AIGC 在 CRM 中的应用: 个性化营销内容创作:根据客户数据生成个性化营销文案、视觉内容等,提高营销效率和转化率。 客户服务对话系统:开发智能客服系统,通过自然语言交互解答客户咨询、投诉等。 产品推荐引擎:生成产品描述、视觉展示等内容结合推荐算法为客户推荐产品,提升销售业绩。 CRM 数据分析报告生成:自动生成数据分析报告,包括多种形式,加快生产流程。 智能翻译和本地化:提供高质量多语种翻译及本地化服务,打造全球化营销内容。 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低制作成本。 客户反馈分析:高效分析客户反馈文本和多媒体信息,挖掘需求和潜在痛点。 需要注意的是,AIGC 在应用过程中仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-10-15
AIGC在CRM中有什么应用
AIGC(AI 生成性内容)在 CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面: 1. 个性化营销内容创作 AIGC 可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。 2. 客户服务对话系统 基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 3. 产品推荐引擎 借助 AIGC 生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成 AIGC 可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。 5. 智能翻译和本地化 AIGC 技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。 6. 虚拟数字人和营销视频内容生成 AIGC 可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析 AIGC 可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 总的来说,AIGC 为 CRM 系统带来了自动化内容生成、智能交互和个性化服务的能力,有望显著提升营销效率和客户体验。不过在应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-04-19
ai设计做产品设计,市场前景如何
AI 设计用于产品设计具有广阔的市场前景。以下是一些相关的分析: 在 PPT 类产品方面,国内外的此类产品丰富多样。市场上的 PPT 类 AI 产品通常是在传统工具基础上融入生成式 AI 新功能,带来创新的同时也造成产品种类繁多,可能让用户选择时感到困惑。在国内,爱设计 PPT 表现出色,其背后有实力强大的团队,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的机遇,已确立市场领先地位。对于经常制作 PPT 的人,如商务人士、教育工作者、学生等,爱设计 PPT 是值得尝试的工具,能提高效率并保证高质量输出,且有望在未来带来更多惊喜。 从近两年的发展来看,人工智能技术特别是大语言模型的快速发展带来巨大冲击。AI 产品的发展趋势在变化,从通用能力逐渐转向专业化细分,如图像生成的 Midjourney、Stable Diffusion,视频制作的 Pika、Runway,音频处理的各种相关工具等,每个细分领域的产品都在提升核心能力,提供更精准高质量的服务。 在商业模式上,也有创新探索。如针对 ToB 市场的深耕,像为内容创作者服务的 ReadPo;还有新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领特定主题词,实现流量变现。这些都表明 AI 产品正从技术展示向解决用户痛点和创造商业价值转变。 综上所述,AI 设计在产品设计领域的市场前景看好,不断创新和满足用户需求将是未来发展的关键。
2024-12-05
国内最好用的产品设计AI软件且免费的网站
以下为国内部分免费且好用的产品设计 AI 软件及相关网站: |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化|6 月访问量(万 Visit)|相对 5 月变化| |||||||| |16|无限画|图像生成|144|0.029|无|无| |21|创客贴 AI|设计工具|111|0.224|90|0.082| |22|MasterGo|设计工具|105|0.234|100|0.087| |25|即时 AI 设计|设计工具|89.9|0.022|100|0.126| |38|创客贴 AI|设计工具|90|0.082|无|无| |42|Pixso AI|设计工具|54.9|0.017|无|无|
2024-10-29
ai做产品设计
以下是关于使用 AI 进行产品设计的相关内容: 在产品设计方面,AI 可以发挥重要作用,包括但不限于以下几个方面: 对于阿里巴巴营销技巧和产品页面优化: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:通过 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:借助 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:运用 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:通过 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:利用 AI 分析不同营销活动效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高参与度和转化率。 在制造业领域: 1. 产品设计和开发:利用如 Adobe Firefly、Midjourney 等 AI 生成工具,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在产品原型设计方面: 目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,例如: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,其插件系统中的一些插件利用 AI 技术辅助设计工作,如自动生成设计元素等。 这些工具中的 AI 功能通常包括自动生成设计元素、提供设计建议、优化用户界面布局等,以减少设计师的重复劳动,并提高设计效率。随着 AI 技术的不断发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-10-13
产品设计AI软件
以下是关于产品设计 AI 软件的相关信息: 一、产品经理 AI 工具集 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com) 二、产品原型设计的 AIGC 工具 目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,以下是一些流行的工具: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发了一些 AI 插件用于增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中一些插件利用 AI 技术辅助设计工作,如自动生成设计元素等。 三、使用 AI 完成阿里巴巴营销技巧和产品页面优化的步骤 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化的产品推荐,增加销售额。
2024-08-13
我现在是一家公司的实习生,目前参与的项目是AI法律大模型未来法官助手,这个系统的功能是提取案件中的信息,自动填写到预设好的要件中,比如犯罪嫌疑人的姓名、身份证号、出生日期、事发经过等等,我该如何去学习提示词
以下是关于如何学习提示词运用的建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中获取大量案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。同时,在与大模型交互时,方法论不是关键,不断尝试和交互是最佳方法,无需严格遵循规则,未达成目的就锲而不舍地再尝试或更换模型。另外,用 Markdown 格式清晰表达问题有助于提高与模型交流的效率和精确性,其具有结构清晰、格式化强调、适用性广等优点。
2024-12-23
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
生成书籍阅读助手的 Prompt
以下是为您生成的书籍阅读助手的 Prompt 相关内容: 如果想让 AI 帮助您像“樊登读书”或者“得到”这样给您讲书,您需要设计一个叫做“书籍阅读助手”的 Prompt。要把通用型的读书方法论复刻到 Prompt 里,再根据不同类型的书籍测试,不断优化和迭代。 通用型读书方法论的访谈问题包括: 1. 不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出? 2. 阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗? 3. 读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容? 4. 一本书您会读几遍?有什么顺序上的讲究吗? 5. 您会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢? 6. 如果要教您大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢? 当上述问题都有清晰、明确的答案之后,就可以开始设计 Prompt 了。 如果想要让 AI 在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的 Prompt,要重点研究如何选出适合用户的书,如何实现 Prompt 的激励效果和让自己读完有获得感(例如生成读书笔记)。 如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。
2024-12-19
有哪些A股AI交易助手可供使用?
以下是一些与交易相关的 AI 工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注关键方面。 2. Clari:专门从事智能收入运营的软件,以创建高度准确的收入预测能力闻名,能统一数据并以易理解方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 4. MeetRecord:专注于销售通话记录和辅导的软件公司,利用人工智能技术为高绩效销售团队提供强大的对话智能解决方案。其核心功能包括 AI 驱动的笔记记录、个性化辅导计划、交易智能和推荐、CRM 自动化、多语言支持等。适用于需要高效管理和分析会议内容的企业,在 2024 年 6 月完成了 PreA 轮融资。体验链接:https://www.meetrecord.com 。 此外,还有将交易与 AIGC 相结合,打造私人高级交易顾问的摊位,如“AI+交易:来定制专属于你的私人高级交易顾问吧!”但目前关于 A 股的特定 AI 交易助手,上述信息未明确提及。
2024-12-17
AI炒股助手
以下是关于 AI 炒股助手的相关信息: 目前,AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。 在炒股方面,博主林亦 LYi 实现了某种程度上的多 Agent 协作能力。此外,Stocked AI 是一个投资服务,提供每日股票推荐,其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 还有一个摊位信息提到“AI+交易:来定制专属于你的私人高级交易顾问吧!”,其思路是将交易与 AIGC 相结合,打造私人高级交易顾问。但对于个人投资者而言,心态在交易中起着关键作用,单纯迷信技术分析提高胜率实现长期稳定盈利不可行,新人往往对交易理论不熟悉,多种策略配合或能提高理论胜率。
2024-12-17
优秀的来源大模型有哪些
以下是一些优秀的大模型: Google 的 T5:属于 encoderdecoder 类型的模型,适用于翻译和摘要等任务。 OpenAI 的 GPT3:预训练数据量大,参数众多,能根据用户输入的任务描述或示例完成任务。 ChatGPT:用户通过像和人类对话的方式即可完成任务。 国内的优秀大模型有: 智谱清言(清华&智谱 AI):基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三,更擅长专业能力,但代码能力有优化空间,知识百科稍显不足。可应用于 AI 智能体、较复杂推理、广告文案、文学写作等场景。 通义千问 2.0(阿里云):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡。聚焦在移动设备端的应用,涵盖知识、记忆、工具、创作等方向,支持多种工具和文生文、文生图等场景。 Baichuan213BChat(百川智能):百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-28
国内外最好的来源大模型有哪些 对比介绍一下
以下是国内外一些较好的大模型及其对比介绍: 国外大模型: GPT4 Turbo 总分 90.63 分遥遥领先,在各项能力上表现出色。 国内大模型: 文心一言 4.0(API)总分 79.02 分,过去 1 年有长足进步。 通义千问 2.0(阿里云):在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队,适合应用于金融、医疗、汽车等垂直专业场景及代码生成与纠错等场景。 AndesGPT(OPPO):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。 百川智能的 Baichuan213BChat:是中文开源模型的主导力量,在中文上表现优于国外开源模型。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,但国内外的平均水平差距在缩小。另外,国内开源模型在中文上表现要好于国外开源模型。
2024-12-28
自己的ai来源模型是什么
智谱·AI 的开源模型包括以下部分: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。 WebGLM2B MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。 MathGLM500M MathGLM100M MathGLM10M MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。 Visualglm6B:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求选择合适的部署方式。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等作为基础,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-12-27
基于多模态大模型的具身智能 技术原理是什么
基于多模态大模型的具身智能技术原理主要包括以下方面: 决策模块是具身智能系统的核心,负责接收感知模块的环境信息,进行任务规划和推理分析,以指导行动模块生成动作。早期决策模块主要依赖人工编程规则和专用任务算法,而基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面存在局限。 大模型的出现极大增强了具身智能体的智能程度,提高了环境感知、语音交互和任务决策能力。具身智能体的大模型是 AIGA,调用机械臂、相机等身体部件,其发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。 VLA 输入语言、图像或视频流,输出语言和动作,在统一框架内融合互联网、物理世界和运动信息,实现从自然语言指令到可执行动作指令的直接转换。 VLN 输入语言、图像或视频流,输出语言和移动轨迹,用于统一指令输入框架,使大模型直接生成运动方向、目标物体位置等操作信息。 Google Deepmind 从大模型入手打造具身智能,率先提出 Robotics Transformer 系列模型,如 RT1 等,并不断升级。RT1 基于模仿学习中的行为克隆学习范式,输入短的图像序列和指令,输出每个时间步的动作。随着数据量增加,有从分层模型过渡到端到端模型的趋势。 北大 HMI Lab 团队构建了全新的 RoboMamba 多模态大模型,使其具备视觉常识任务和机器人相关任务的推理能力。 在具身智能应用中,更强调“动态”学习方式,如强化学习、模拟学习等,让机器人与环境不断交互学习,通过奖励机制优化行为,获得最优决策策略,摒弃传统控制论算法物理建模的弊端。
2024-12-27
基于世界模型的具身智能 技术原理是什么
基于世界模型的具身智能技术原理主要包括以下方面: 谷歌发布的世界模型 Genie: 能够学习一致的动作空间,可能适合训练机器人,打造通用化的具身智能。 其架构中的多个组件基于 Vision Transformer构建而成,为平衡模型容量与计算约束,在所有模型组件中采用内存高效的 STtransformer 架构。 Genie 包含三个关键组件:潜在动作模型(Latent Action Model,LAM)用于推理每对帧之间的潜在动作;视频分词器(Tokenizer)用于将原始视频帧转换为离散 token;动态模型给定潜在动作和过去帧的 token,用来预测视频的下一帧。潜在动作模型以完全无监督的方式学习潜在动作。 相关论文《Genie:Generative Interactive Environments》已公布,论文地址为 https://arxiv.org/pdf/2402.15391.pdf,项目主页为 https://sites.google.com/view/genie2024/home?pli=1 ,论文的共同一作多达 6 人,包括华人学者石宇歌。 具身智能算法层: 机器人创业公司 Covariant 推出的首个机器人基础模型 RFM1 是基于真实任务数据训练的机器人大模型,共有 80 亿参数,是基于文本、图片、视频、机器人动作、传感器信息等多模态数据进行训练的 any to any 序列模型。 RFM1 将机器人的实际动作也视作 Token,其 token 包括多种模态,每个模块都有专门的 tokenizer 进行处理。操作只有一个——预测下一个 token。 RFM1 对物理世界的理解源自于其学习生成视频的过程,通过接受初始图像和机器人动作的输入,预测接下来视频帧的变化,掌握了模拟世界每个瞬间变化的低层次世界模型。 行业进展: 李飞飞在 AI 3D 生成领域的工作极大地加速了进展,通过对 3D 物体的生成所构建出的世界,再进行降维的视频生成,生成的视频自然符合物理世界的规律,生成的世界也可交互。 世界模型开启了在虚拟世界中预训练机器人的可能,这个虚拟世界完全符合物理规律,可以快速生成无限场景,支持并行训练多个任务,大幅降低试错成本,加速机器人的学习过程,为实现更复杂的机器人行为打开可能。这种进步正在催生新的应用可能,如更自然的人机交互界面、更安全的机器人控制系统、更高效的虚拟训练平台等。世界模型也在改变 AI 理解和交互世界的基本方式。
2024-12-27
微调模型
微调(Finetuning)包括以下方面: 数据格式化: 需一组训练示例,每个含输入(“提示”)及关联输出(“完成”)。 提示应以固定分隔符(如\n\n\n\n)结尾,完成应以空格开头,并以固定停止序列(如\n、等)结束。 推理时应按创建训练数据集的方式格式化提示及指定停止序列。 一般最佳实践: 使用更多高质量示例效果更好,至少几百个,最好经人类专家审查,示例数量增加通常能线性提高性能。 分类器较易上手,对于分类问题建议使用 ada,微调后通常比强大模型稍差但速度快、成本低。 若对已有数据集微调,应手动检查数据是否有问题。 创建微调模型: 假设已准备好训练数据,使用 OpenAI CLI 开始微调工作,需指定基本模型名称(ada、babbage、curie 或 davinci),可自定义微调模型名称。 运行命令会上传文件、创建作业、流式传输事件直至完成,可能需几分钟到数小时,完成后会显示微调模型名称,还可进行列出现有作业、检索状态或取消作业等操作。 使用微调模型: 作业成功后,fine_tuned_model 字段填充模型名称,可在 Completions API 中指定该模型并使用 Playground 发出请求。 首次完成后可能需几分钟准备,若请求超时可能是模型仍在加载,几分钟后重试。 可通过多种方式(如 OpenAI 命令行界面、cURL、Python、Node.js 等)传递模型名称发出请求,并使用其他完成参数。 删除微调模型: 组织中被指定为“所有者”才能删除。 准备数据集: 微调是强大技术,用于创建特定用例新模型,微调前建议阅读针对用例的最佳实践和具体指南。
2024-12-27