Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型应用产品设计流程

Answer

构建大模型应用产品的设计流程包括以下关键步骤和要点:

  1. 框架选择:根据项目需求选择合适的开发框架,这是非常关键的一步。
  2. 了解业务需求:深入了解业务背后的深层次需求,确保模型能够解决实际问题,并据此设定流程环节。
  3. 提示词设计:在每个环节中精心设计提示词,引导模型提供准确和有用的回复。提示词的设计直接影响模型的输出质量和应用的实际效果。
  4. 遵守标准:确保应用在提供服务的同时,遵守安全和伦理标准。
  5. 测试与迭代:通过不断的测试和迭代,优化模型性能和用户体验。
  6. 部署与维护:成功部署应用后,还需要持续的维护和更新以适应不断变化的需求。
  7. 工程化:不做工程化终究会让模型应用变得无法维护。

此外,在实际应用中落地大型模型时,永远是解决方案优先。大型模型通常位于基础层,应更注重模型之上构建的应用,切实解决服务对象面临的实际问题。基于大模型的产品虽然“简约但不简单”,人们会针对特定需求设定模型的功能,并进行有目标的开发。通过掌握这些关键点,可以确保构建的模型应用不仅技术先进,而且能真正解决用户问题,提供有价值的服务。

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG 提示工程(三):迈向工程化应用

在第三部分中,我们将深入探讨如何基于大模型构建模型应用。这一过程从框架选择到最终应用的搭建,涉及一系列复杂的步骤和环节。实际上,许多细节和阶段往往是在实际操作中才会逐渐显现出来。因此,开发一个大模型的应用绝非易事。在整个提示词设计层面,同样需要精细的工作。精心的设计和调试是确保整个流程顺畅运行的关键,也是保证最终应用具有实际价值的基础。这不仅仅是在对话窗口中输入文字,或者在聊天窗口中发送指令并接收输出那么简单。提示词的设计直接影响模型的输出质量和应用的实际效果。为了构建一个有效的大型语言模型应用,我们需要:1.不做工程化终究会让模型应用变得无法维护。2.根据项目需求选择一个合适的开发框架是非常关键的。3.了解业务背后的深层次需求,确保模型能够解决实际问题。根据了解到的业务需求设定流程环节。4.在每个环节中,精心设计提示词以引导模型提供准确和有用的回复。5.确保应用在提供服务的同时,遵守安全和伦理标准。6.通过不断的测试和迭代,优化模型性能和用户体验。7.成功部署应用后,还需要持续的维护和更新以适应不断变化的需求。通过这些关键点的掌握,我们可以确保构建的模型应用不仅在技术上是先进的,而且能够真正解决用户的问题,提供有价值的服务。

RAG提示工程系列(3)| 迈向工程化应用

在第三部分中,我们将深入探讨如何基于大模型构建模型应用。这一过程从框架选择到最终应用的搭建,涉及一系列复杂的步骤和环节。实际上,许多细节和阶段往往是在实际操作中才会逐渐显现出来。因此,开发一个大模型的应用绝非易事。在整个提示词设计层面,同样需要精细的工作。精心的设计和调试是确保整个流程顺畅运行的关键,也是保证最终应用具有实际价值的基础。这不仅仅是在对话窗口中输入文字,或者在聊天窗口中发送指令并接收输出那么简单。提示词的设计直接影响模型的输出质量和应用的实际效果。为了构建一个有效的大型语言模型应用,我们需要:1.不做工程化终究会让模型应用变得无法维护。2.根据项目需求选择一个合适的开发框架是非常关键的。3.了解业务背后的深层次需求,确保模型能够解决实际问题。根据了解到的业务需求设定流程环节。4.在每个环节中,精心设计提示词以引导模型提供准确和有用的回复。5.确保应用在提供服务的同时,遵守安全和伦理标准。6.通过不断的测试和迭代,优化模型性能和用户体验。7.成功部署应用后,还需要持续的维护和更新以适应不断变化的需求。通过这些关键点的掌握,我们可以确保构建的模型应用不仅在技术上是先进的,而且能够真正解决用户的问题,提供有价值的服务。[heading2]九、彩蛋更新[content]本次的彩蛋更新加入了“Emotion”字段,智能体构建专家将会动态推理智能体情感设定,帮助你制作一个更有情商的智能体。

RAG提示工程系列(3)| 迈向工程化应用

随着大型模型在多个领域的应用日益广泛,我们可以观察到一个共同点:在实际落地的架构中,大型模型通常位于基础层。这一现象表明,在大型模型的实际部署中,并非以模型本身为首要考量,而是更注重模型之上构建的应用。这些应用能够切实解决服务对象面临的实际问题,从而赋予模型真正的价值。因此,我们可以得出一个重要结论:在方案的具体实施过程中,我们应优先考虑解决方案,而非仅仅关注模型本身。[heading4]2.2产品形态变了[content]根据当前市场状况和之前的分析,我们明白了在企业中真正实施的模型解决方案主要集中在应用层面。这些解决方案利用模型的强大功能,发展出多种“模型应用”。有趣的是,尽管大型模型本质上是一个综合体,人们还是习惯于从逻辑上对其进行分类和定义。我们常说寻找应用场景,实际上是在为大型模型的能力寻找适当的逻辑划分,即明确它们在特定领域或范围内的具体应用方向。因此,我们会针对特定需求设定模型的功能,并进行有目标的开发。基于大模型的产品(确切来说是大型语言模型),都是“简约但不简单”。

Others are asking
AI产品设计
以下是关于 AI 产品设计的相关内容: Perplexity 背后的 AI 用户体验高标准解析 Perplexity 通过遵循 Jakob Nielsen 的十大可用性启发式原则,将 AI 产品的设计提升到新高度。这些原则不仅是技术指导,更是对人性的深刻洞察。总结性思考如下: 1. 用户体验的终极目标:追求功能完善的同时,注重情感连接,每次互动都是建立信任和忠诚的机会。 2. 设计的力量:优秀设计能引导用户,减少认知负担,让用户使用时感到愉悦和有成就感,实现商业价值与用户满意度的双重提升。 3. 持续的进化:AI 产品设计需不断迭代优化,适应需求变化和市场发展。 4. 教育与引导:在 AI 时代,有责任教育用户更好利用技术,引导理解技术背后的价值和可能性。 Jakob Nielsen 的十大可用性启发式方法保持 25 年以上不变,因其来自人类行为基础,对下一代用户界面仍生效,建议查看相关视频讲解。 生成 Logo 的 AI 产品 以下是一些可以帮助用户生成 Logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:可根据输入的品牌名称和行业类别快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 使用这些工具时,用户通常可根据品牌理念和视觉偏好,通过简单交互获得系列设计方案,并进一步定制优化至满意。另外,可访问获取更多好用的工具。 用 AI 完成阿里巴巴营销技巧和产品页面优化 使用 AI 来完成阿里巴巴营销技巧和产品页面优化,可采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,了解需求,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 帮助预测需求,优化库存管理,减少积压和缺货。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高参与度和转化率。
2025-03-04
ai设计做产品设计,市场前景如何
AI 设计用于产品设计具有广阔的市场前景。以下是一些相关的分析: 在 PPT 类产品方面,国内外的此类产品丰富多样。市场上的 PPT 类 AI 产品通常是在传统工具基础上融入生成式 AI 新功能,带来创新的同时也造成产品种类繁多,可能让用户选择时感到困惑。在国内,爱设计 PPT 表现出色,其背后有实力强大的团队,对市场需求有敏锐洞察力,成功把握 AI 与 PPT 结合的机遇,已确立市场领先地位。对于经常制作 PPT 的人,如商务人士、教育工作者、学生等,爱设计 PPT 是值得尝试的工具,能提高效率并保证高质量输出,且有望在未来带来更多惊喜。 从近两年的发展来看,人工智能技术特别是大语言模型的快速发展带来巨大冲击。AI 产品的发展趋势在变化,从通用能力逐渐转向专业化细分,如图像生成的 Midjourney、Stable Diffusion,视频制作的 Pika、Runway,音频处理的各种相关工具等,每个细分领域的产品都在提升核心能力,提供更精准高质量的服务。 在商业模式上,也有创新探索。如针对 ToB 市场的深耕,像为内容创作者服务的 ReadPo;还有新型广告模式,如天宫搜索的“宝典彩页”,允许用户认领特定主题词,实现流量变现。这些都表明 AI 产品正从技术展示向解决用户痛点和创造商业价值转变。 综上所述,AI 设计在产品设计领域的市场前景看好,不断创新和满足用户需求将是未来发展的关键。
2024-12-05
国内最好用的产品设计AI软件且免费的网站
以下为国内部分免费且好用的产品设计 AI 软件及相关网站: |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化|6 月访问量(万 Visit)|相对 5 月变化| |||||||| |16|无限画|图像生成|144|0.029|无|无| |21|创客贴 AI|设计工具|111|0.224|90|0.082| |22|MasterGo|设计工具|105|0.234|100|0.087| |25|即时 AI 设计|设计工具|89.9|0.022|100|0.126| |38|创客贴 AI|设计工具|90|0.082|无|无| |42|Pixso AI|设计工具|54.9|0.017|无|无|
2024-10-29
ai做产品设计
以下是关于使用 AI 进行产品设计的相关内容: 在产品设计方面,AI 可以发挥重要作用,包括但不限于以下几个方面: 对于阿里巴巴营销技巧和产品页面优化: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:通过 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:借助 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:运用 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:通过 AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:利用 AI 分析不同营销活动效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高参与度和转化率。 在制造业领域: 1. 产品设计和开发:利用如 Adobe Firefly、Midjourney 等 AI 生成工具,根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在产品原型设计方面: 目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,例如: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发的一些 AI 插件可增强设计流程。 3. Sketch:流行的矢量图形设计工具,其插件系统中的一些插件利用 AI 技术辅助设计工作,如自动生成设计元素等。 这些工具中的 AI 功能通常包括自动生成设计元素、提供设计建议、优化用户界面布局等,以减少设计师的重复劳动,并提高设计效率。随着 AI 技术的不断发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-10-13
crm产品设计类的大模型助手有哪些
以下是一些与 CRM 产品设计相关的大模型助手类型: 1. LangGraph 中的多专家协作模型助手,如航班预订助手、酒店预订助手、汽车租赁助手、旅行助手以及主要助手,主要助手可在这些助手之间进行切换。 2. 大圣教程中提到的 Agent 类型助手,像主驾驶一样具有更强的独立性和执行复杂任务的能力,能够根据任务目标进行自主思考和行动,自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. ChatGPT 可作为业务助手,以助手方式进行工作辅助,不在主业务流程内,负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可以以业务环方式,经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2024-08-21
产品设计AI软件
以下是关于产品设计 AI 软件的相关信息: 一、产品经理 AI 工具集 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com) 二、产品原型设计的 AIGC 工具 目前有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,以下是一些流行的工具: 1. UIzard:利用 AI 技术生成用户界面,可根据设计师提供的信息快速生成 UI 设计。 2. Figma:基于云的设计工具,提供自动布局和组件库,其社区开发了一些 AI 插件用于增强设计流程。 3. Sketch:流行的矢量图形设计工具,插件系统中一些插件利用 AI 技术辅助设计工作,如自动生成设计元素等。 三、使用 AI 完成阿里巴巴营销技巧和产品页面优化的步骤 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化的产品推荐,增加销售额。
2024-08-13
流程图生成
生成流程图主要有以下两种方式: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形,代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 个人比较倾向于语法转图形的方式,只要解决语法抽象写起来麻烦的问题就行。使用 ChatGPT 生成图形语法的生成流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑,用自然语言描述出来生成 Mermaid 图形语法。 3. 在线校验测试是否成功,最后测试发现非常完美。 此外,Recraft 也能生成带有长文本图像的流程图解。在其开发过程中包含了很多不同的模型和工作,比如帮助处理数据的模型,由非专业设计师的标注人员和专业设计师参与的标注工作,训练 OCR 模型,新构建的数据集等等。但创建自己的模型存在困难,既需要超强的团队,组建这样的团队很难,而且训练自己的模型也很贵。
2025-03-13
生成论文流程图
以下是关于生成论文流程图的相关内容: 开发:ChatGPT+程序员 10 倍提效 生成各种流程图、时序图等,秒杀 VISIO 副标题:谁还用 VISIO?ChatGPT 生成流程图、时序图,效果震撼! 为什么要用 ChatGPT 生成流程图、时序图? 生成流程图有两种方式: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件) 优点:直观 缺点:需要花时间在布局上 2. 语法渲染成图形: 代表语法: 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中。比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式 缺点:有点抽象 我个人比较倾向于语法转图形的方式。所以只要解决语法抽象写起来麻烦的问题就行。
2025-03-12
ai制作幽默表情包系列的工作流,用dify或make实现的全流程
以下是使用 Dify 或 Make 实现 AI 制作幽默表情包系列的全流程: 1. 素材准备 平面设计稿:确定表情包的基本设计和角色形象。 2. 制作流程 转 3D:将平面设计稿转换为 3D 形式,增加立体感和丰富度。 AI 生成场景:利用相关工具生成适合的场景。 AI 图生视频:将生成的图片转换为视频。 剪辑转 gif:对视频进行剪辑,并转换为 gif 格式。 压缩:使用图像压缩工具,如 https://imageresizer.com/zh/%E5%9B%BE%E5%83%8F%E5%8E%8B%E7%BC%A9 ,对 gif 进行压缩,以满足上传要求。 上传微信表情平台审核:完成压缩后,上传至微信表情平台进行审核。 相关工具: 即梦:https://jimeng.jianying.com/aitool/image/generate Recraft: https://www.recraft.ai/
2025-03-11
ai视频制作流程,详解
将小说制作成 AI 视频通常包括以下流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-11
提供几款好用的AI流程图
以下为您推荐几款好用的 AI 流程图工具: 1. Creately: 简介:是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 2. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 3. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设您需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-10
计算机小白学习AI的学习流程
对于计算机小白学习 AI,以下是一个较为系统的学习流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下案例: 二师兄在 2024 年 2 月接触到 AI 绘画,通过学习 SD 秋叶安装包和相关教程,进行炼丹实践。 雪梅 May 采用输入→模仿→自发创造的学习模式,在半年多的时间里保持较好的学习状态,学习 AI 相关知识。
2025-03-07
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即采用合适的算法讲述“书本”中的内容,让大模型更好理解Token之间的关系。 4. 就业指导:学完知识后,为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有基于统计的Word2Vec、GloVe,基于深度网络的CNN、RNN/LSTM,基于神经网络的BERT、Doc2Vec等。以Transform为代表的大模型采用自注意力(Selfattention)机制来学习不同token之间的依赖关系,生成高质量embedding。 大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT3拥有1750亿参数,而词汇表token数只有5万左右。 所谓的大模型,简而言之,就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂任务。大模型强大的原因在于庞大的参数数量和大量的数据训练。这些参数是模型在学习过程中不断调整的核心,帮助模型更深入地理解和生成数据。同时,大量的数据,无论是文本、图像还是音频数据,都是大模型学习的基础,使其能够掌握丰富的知识和技能。
2025-03-13
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
市面上主流的大模型有什么区别
市面上主流的大模型主要有以下区别: 1. 架构类型: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 处理信息类型: 大型语言模型:专注于处理和生成文本信息。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 3. 应用场景: 大型语言模型:主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 大型多模态模型:可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 4. 数据需求: 大型语言模型:主要依赖大量的文本数据进行训练。 大型多模态模型:需要多种类型的数据进行训练,包括文本、图片、音频等。 5. 规模: 大模型的预训练数据非常大,往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练,参数也非常多,如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 6. 优秀模型: GPT4(网页版)、GPT4(API)、智谱清言、通义千问 2.0、AndesGPT(OPPO)、文心一言 4.0(API)、MoonShot(KimiChat)、Claude2、360 智脑、Qwen72BChat、文心一言 4.0(网页版)等。 7. 性能表现:国内外大模型存在差距,如 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有一定差距。
2025-03-13
SD 反推模型
以下是关于 SD 反推模型的相关内容: Fooocus 模型: LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。单独安装需下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),通过修改 Fooocus_win64_1110\\Fooocus\\modules\\path.py 文件中的路径来配置,修改为秋叶包模型对应的路径,如: 大模型路径:sdwebui\\models\\Stablediffusion\\SDXL LoRA 模型路径:sdwebui\\models\\lora 配置好后点击 run.bat 文件启动。 Comfyui SD 学社做黏土头像的相关插件: 提示词反推 WD14Tagger:https://github.com/pythongosss/ComfyUlWD14Tagger,首次使用会自动下载模型(需要网络环境) 处理人物一致性: IPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plus 也可以用 instantID,这里使用的是 IPadpter,后续很多地方也会用到,建议先使用起来。关于 IPAdapter 的使用,之前有文章介绍。 ControlNet: 预处理的插件:comfyui_controlnet_aux https://github.com/Fannovel16/comfyui_controlnet_aux ControlNet 模型: XLCN 模型下载:https://huggingface.co/lllyasviel/sd_control_collection/tree/main 1.5 理模型下载:https://huggingface.co/lllyasviel/ControlNetv11/tree/main ControlNet 的 tile 模型: 随着 ControlNet1.1 的更新,tile 模型横空出世,其强大的功能让之前的一些模型变得有点黯然失色。 可用于高清修复小图,比如将分辨率不高的食物图片拖进“WD 1.4 标签器”反推关键词,然后发送到图生图。使用大模型“dreamshaper”调整参数尺寸,放大为 2K,提示词引导系数官方推荐在 15 以上,重绘幅度在 0.5 以上。 可用于修复和增加细节,如处理一张细节不足且结构错误的小屋图。tile 的预处理器用来降低原图的分辨率,为新图添加像素和细节提供空间。若图片本身像素很低,可以不使用预处理器,直接使用 tile 模型。
2025-03-13
当前AI应用的内外部环境及趋势
当前 AI 应用的内外部环境及趋势如下: 技术创新方面:大模型创新架构优化加速涌现,融合迭代成为趋势;Scaling Law 泛化,推理能力成为关键,推动计算和数据变革;视频生成在 AGI 探索中表现突出,空间智能统一虚拟和现实。 应用格局方面:第一轮洗牌结束,聚焦 20 赛道 5 大场景;多领域竞速中运营大于技术,AI 助手竞争激烈;AI+X 赋能类产品发展迅速,原生 AI 爆款难求。 产品趋势方面:多模态上马,Agent 席卷一切,高度个性化需求凸显。 行业渗透方面:数据基础决定初速度,用户需求成为加速度。 创投方面:投融资马太效应明显,国家队出手频率提升。 在具体的行业动态中: AI 音频领域:效果和延迟问题取得突破,难以分辨语音是否由 AI 生成,语音生成延迟降低。 3D 世界生成领域:目前处于初级阶段,新产品未向大众开放,预计明年会有巨大进步。 应用领域:更新主要集中在 AI 搜索、AI 知识库、AI 编程,传统软件增加 AI 功能,未来可能不再有“AI 应用”的单独分类。 融资方面:能拿到钱的不再局限于模型公司,越来越多应用公司受资本青睐。 红杉资本观点认为: 人工智能在客户支持、法律服务和软件工程等行业展示了产品与市场的契合度。 生成式人工智能经历快速增长,但 AI 投资转化为可观回报存在问题。 2024 年将是真正的 AI 应用从“副驾驶”转变为“代理”的一年,未来将更有能力完成更高层次认知任务,计算平衡从预训练转向推理。 目前人工智能公司融资环境不均衡,关键挑战在于提高用户保留率和缩小期望与现实差距,产品与市场的契合度有待进一步提升。
2025-03-13
打造企业AI应用场景
以下是关于打造企业 AI 应用场景的相关内容: 阿里云百炼: 阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。开发者和业务人员都能参与大模型应用的设计和构建。通过简单的界面操作,能在 5 分钟内开发出大模型应用,或在几小时内训练出专属模型,从而将更多精力专注于应用创新。 使用场景示例: 法律合规改写:招聘平台可通过百炼工作流封装多个法律合规 Agent 判断企业端要求是否符合劳动法等,并自动改写,减少人力审核需求。 关键信息抽取&打标签:法催机构可通过百炼工作流构建并串联相关 Agent,减少律师数据整理、分析和归类工作。 智能助理&客服:教育机构可通过百炼工作流搭建首页智能助手,通过意图分类能力分发用户 Query 并回答。 AI 决策相关: 在制定企业 AI 战略时,要在提高效率、促进创新的同时规避潜在风险。企业不需要短期内进行全面伦理审查,但可优化实际操作流程,满足市场需求并保持长远发展。 明确 AI 的适用范围:企业要针对自身业务需求明确使用边界。不是所有决策都需由 AI 完成,在复杂决策场景中,AI 适合辅助角色。常见适用场景包括数据密集型工作(如市场分析、客户画像、生产优化等)、重复性任务(自动化流程、预测维护等)、有限范围内的创新(在已有数据基础上提供初步建议)。企业管理层可引入内部评估机制,每季度评估 AI 在不同业务线中的表现,并设定不同使用权限。AI 可部署在低风险、可标准化任务上,涉及品牌形象、用户隐私、产品战略等决策应由人类主导。
2025-03-13
deepseek 在飞书中的主要应用场景有哪些
DeepSeek 在飞书中的主要应用场景包括: 1. 自动翻译、改写、图片 OCR、AI 抓取等,关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章,还包括文本翻译、图片翻译、AI 生成爆款标题。 2. 生成深度报告、信息检索、数据整理等。 3. 处理大规模代码,例如粘贴几千行代码并用 XML 包裹,或让 AI 编写代码、搜索相关代码库。 4. 与 Coze 智能体、飞书多维表格和字段捷径(Agent)组合,实现高效的数据抓取与批量 AI 处理,适用于社交媒体数据分析、AI 内容生成、情绪分析等。 5. 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,如辅助办公、教学设计、电商运营等。
2025-03-13
人力资源AI应用
以下是关于人力资源 AI 应用的相关信息: 在管理方面,要做到沟通明确,善于提供上下文,让 AI 更有效地执行任务;明晰 AI 能力边界,善于合理授权并监督检查;擅长任务拆解和整合,提升 AI 协作效率。 在医疗领域,湖南省医保局正式表态,明确禁止使用人工智能生成医疗处方。 在企业方面,Coinbase 全面推动 AI 应用,所有工程师均使用 Cursor AI 工具进行编程,显著提高效率,AI 技术广泛应用于欺诈预防、客户支持、风险评分、设计等领域,下一步将实现从 Jira 或 Linear 工单到 PR 代码的 AI 自动生成,助力需求自动化落地。 在游戏行业,网易推出的首款 AI 手游《逆水寒》将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特的剧情体验,还内嵌了全自动“AI 作词机”。 在人力资源管理领域,AI 的应用覆盖了从招聘初期(如职位描述生成、简历分析、面试题设计)到员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)再到员工培训与发展各个环节,显著提高了工作效率。 此外,智联招聘 APP 利用 AI 技术帮助企业快速筛选简历,提高招聘效率;贝壳找房 APP 通过 AI 技术准确评估房地产价值,为买卖双方提供参考。
2025-03-13
当前国内有哪些AIGC应用
当前国内的 AIGC 应用主要有以下一些: 语言文本生成类: “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
2025-03-12
AI应用开发
以下是关于 AI 应用开发的相关信息: 阿里云百炼是基于通义系列大模型和开源大模型打造的一站式大模型服务平台,具有以下核心能力和优势: 1. 大模型 API 服务:高可用、高性能、高性价比,提供通义闭源和开源系列大模型,以及图片、语音等多模态大模型和国内优质三方大语言模型,主推规格如 qwenplus、qwenturbo 等。 2. 目标客户群体:有开发经验的企业或独立开发者。 3. AI 应用搭建:可观测、可干预、可追踪,提供 RAG 智能体应用、工作流编排和智能体编排三类使用场景的应用构建能力,以及包含插件能力、运营工具箱等适配工具,实现 10 分钟拖拉拽快速搭建 AI Agent。 4. 模型在线训练部署:一站式模型管理,弹性扩缩容,提供模型训练、部署、调优和评测,支持全参/高效等多种在线调优方式,同时配备多元化的大模型效果评测能力,目标客户群体为有算法和技术人力、有丰富企业数据、期望拥有专属大模型的企业。 第一期「AI 实训营」手把手学 AI 课程: 1. 共学直播地址: 会议时间:20:00 21:30 会议 ID:936197591 会议链接: 2. 第一期课表: 01/07 20:00 ,课程内容包括阿里云百炼大模型平台全解析、企业级服务场景对号入座、百闻不如体验,实操方有感知。 01/08 20:00 ,课程内容包括生态能力解析:手把手案例带做、服务场景透视:企业级案例应用、AI 机器人搭建:企业知识问答场景全覆盖。 01/09 20:00 ,课程内容包括阿里云百炼大模型多模态能力解析、商家运营场景&企业级解决方案分享、实践课堂:拍立得场景构建。 像字节 Coze 这样的工具本质上是「AIfirst aPaaS」,「aPaaS」是指这些 Bot Builder 完完全全就是以前的 aPaaS,把实现一个应用所需的不同类型代码用不同的可视化工具来实现,生成的是「配置」。Bot Builder 针对不同类型换了不同的可视化工具。「AIfirst」是指它们不但开发应用时用 AI 辅助或依赖 AI,开发出来的也是 AI 应用,应用的开发和运行阶段都有大模型支撑。
2025-03-12