Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI系统都是由ML驱动的吗

Answer

并非所有的AI系统都是由机器学习(ML)驱动的。AI(人工智能)是一个广泛的领域,涵盖了许多不同的技术和方法。以下是一些主要的AI方法,除了机器学习之外,还有其他关键技术:

1. 专家系统(Expert Systems)

专家系统是一种早期的AI方法,利用规则和知识库来模拟人类专家的决策过程。它们不依赖于机器学习,而是依靠预定义的规则集。

  • 例子: 医疗诊断系统、故障诊断系统。
  • 技术: 知识库、规则引擎。

2. 模糊逻辑(Fuzzy Logic)

模糊逻辑是一种处理不确定性和模糊性的技术,常用于控制系统和决策支持系统。

  • 例子: 家电控制(如洗衣机、空调)。
  • 技术: 模糊集、模糊规则。

3. 遗传算法(Genetic Algorithms)

遗传算法是一种基于自然选择和遗传学原理的优化技术,用于解决复杂的优化问题。

  • 例子: 路径优化、调度问题。
  • 技术: 选择、交叉、变异。

4. 进化计算(Evolutionary Computation)

进化计算是一组基于自然进化原理的算法,包括遗传算法、进化策略和遗传规划等。

  • 例子: 自动设计、机器人控制。
  • 技术: 自然选择、适应性、进化。

5. 推理和规划(Reasoning and Planning)

推理和规划涉及基于逻辑和规则进行自动推理和问题求解。

  • 例子: 自动定理证明、任务规划。
  • 技术: 谓词逻辑、状态空间搜索。

6. 神经网络(Neural Networks)

虽然神经网络是机器学习的一部分,但它们也可以单独被视为一种独立的方法,特别是深度学习(Deep Learning),这是近年来AI发展的主要驱动力。

  • 例子: 图像识别、自然语言处理。
  • 技术: 反向传播、卷积神经网络、递归神经网络。

7. 强化学习(Reinforcement Learning)

强化学习是一种通过与环境交互来学习策略的机器学习方法,特别适用于动态环境中的决策问题。

  • 例子: 游戏AI、机器人控制。
  • 技术: 马尔可夫决策过程、策略梯度。

8. 自然语言处理(Natural Language Processing, NLP)

NLP是一个专注于人机语言交互的AI子领域,使用各种技术来处理和生成自然语言文本。

  • 例子: 语音识别、机器翻译。
  • 技术: 句法分析、语义分析、词向量。

总结

虽然机器学习,尤其是深度学习,近年来在AI领域取得了显著的进展,并在许多应用中占据主导地位,但AI并不仅限于机器学习。其他方法如专家系统、模糊逻辑和遗传算法等在特定领域中依然发挥着重要作用。选择哪种AI技术取决于具体的应用场景和问题需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

直到IBM深蓝在1997年战胜了国际象棋冠军卡斯帕罗夫后,新的基于概率推论(Probabilistic Reasoning)思路开始被广泛应用在AI领域,随后IBM Watson的项目使用这种方法在电视游戏节目《Jeopardy》中经常击败参赛的人类。概率推论就是典型的机器学习(Machine Learning)。今天的大多数AI系统都是由ML驱动的,其中预测模型是根据历史数据训练的,并用于对未来的预测。这是AI领域的第一次范式转变,算法不指定如何解决一个任务,而是根据数据来诱导它,动态的达成目标。因为有了ML,才有了大数据(Big Data)这个概念。

如何使用 AI 来做事:一份带有观点的指南

当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。

XiaoHu.AI日报

🔗 https://xiaohu.ai/p/75624⃣️🎨Ilus AI:快速生成插画的AI工具:-预制模型能快速生成墨线画、涂鸦等风格插画。-上传插画进行个性化训练,导出为SVG或PNG格式。🔗 https://xiaohu.ai/p/75375⃣️🛡️Palantir混合虚拟现实军事指挥系统:-将任何普通掩体或哨所变为指挥中心,实现沉浸式控制。-功能:混合现实能力、前线指挥、沉浸式控制。🔗 https://x.com/imxiaohu/status/17880766361283669346⃣️🏥Agent Hospital:虚拟AI医院:-模拟从诊断到治疗和康复的完整流程,医生可数天内治疗1万患者。-患者、护士和医生均由LLM驱动的AI代理组成。🔗 https://xiaohu.ai/p/75247⃣️🔒微软为美国情报机构开发的GPT-4:-经过改造的GPT-4模型可在无互联网的环境下处理机密数据。-超级计算机经过18个月调整,约1万人使用。🔗 https://xiaohu.ai/p/75218⃣️📈360 AI搜索增长迅猛:

Others are asking
如果你是一个AI学习者,你会提出哪些问题?让自己的学习更有策略?
以下是作为 AI 学习者可能会提出的一些问题,以使学习更有策略: 1. 如何评估不同 AI 模型的性能和适用场景? 2. 怎样选择适合自己需求的 AI 工具和技术? 3. 在 AI 领域,哪些基础知识是必须牢固掌握的? 4. 如何将 AI 应用于实际项目中,以获得更好的效果? 5. 对于 AI 产生的结果,如何进行有效的评估和验证? 6. 怎样跟上 AI 领域快速发展的步伐,及时更新知识? 7. 在学习 AI 时,如何避免常见的错误和陷阱? 8. 如何培养自己在 AI 方面的创新思维和解决问题的能力? 9. 对于不同学习水平(如高中生、大学生、专业人士),学习 AI 的重点和方法有何不同? 10. 在 AI 学习中,如何平衡理论学习和实践操作?
2025-02-17
Ai生图和生视频和电脑算力的关系
AI 生图和生视频与电脑算力密切相关。 在生成图像和视频的过程中,需要强大的算力来处理复杂的计算任务。例如,像 PIKA1.0 这样的模型,在文生图和文生视频方面表现出色,其高质量和稳定性的输出依赖于足够的算力支持。 拥有大规模 GPU 集群、超算集群、云渲染平台等强大算力资源的企业或个人,能够更高效地完成生图和生视频的任务。 同时,未来算力的重点将从训练模型转向增强推理能力,这也将对 AI 生图和生视频的发展产生重要影响。 此外,一些新的模型和技术不断涌现,如 o1 推理模型,其在给出最终结果前会反复推演和验证,以提供更准确的结果。而像 OpenAI 发布会公布的 Sora v2 功能,能够生成 1 分钟长度的视频,并支持多种形式的转换,提升了多媒体创作的灵活性。 总之,电脑算力是实现高质量 AI 生图和生视频的重要支撑和保障。
2025-02-17
我手里有一个文件知识库,想锻炼一个ai,按照这个文件知识库的习惯帮我改写新的文件
以下是为您整理的内容: 南瓜博士:平生第一次写小说获奖,是 AI 帮我的! 三、丰富细化 接下来要让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用了一个重要技巧,让 AI 以表格形式输出细节描述,这样有三个好处: 1. 打破 AI 原本的叙事习惯,避免出现陈词滥调。 2. 按编号做局部调整容易,指哪改哪,其他内容能稳定不变。 3. 确保内容都是具体细节,避免整段输出时因缩减而丢光细节只剩笼统介绍。 四、串联成文 把上一步生成的五个表格依次复制粘贴,AI 就照着写文章了,偶尔需要帮忙给点建议。 五、失败的局部修改 小说大赛要求最后的作品必须是 AI 直接吐出来的,不能有任何改动且不能超过 2000 字,而自己的小说 2300+字,只好让 GPT4 做修改,一开始它表现不错,但很快暴露出记性不好的缺点。还没来得及高兴,就发现它失忆得很彻底。眼看截止时间快到了,只能求助 Claude,把文章和 GPT 生成的修改意见都给它,让它生成作品,匆匆截图提交。没想到,Claude 把关键情节改没了,如马克偷偷看艾拉、无名猫受伤的原因等。 熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了 四、初体验:Cursor 的安装和使用 三、新增/修改代码、文字 选中代码,使用 Command+K 打开窗口,并输入修改要求。不选中代码打开窗口,可要求 AI 实现新功能,比如让 AI 增加一个广告位。当然,除了代码,也可选中文字进行修改,如改写、翻译等。 四、自动补全代码、注释、文字 输入代码或注释,Cursor 会自动补全代码,按 Tab 生效。除补全代码外,还能补全文字,可尝试。 五、对话窗口 Mac 使用 Shift+Command+L 打开聊天窗口,输入优化页面的需求,AI 能提供不同方案。比如倾向于使用好看的配色方案,点击 Apply,再点击 Accept 生效。要记得保存文件,Mac 的快捷键是 Command+S。这不是成品,若要做完整功能,需不停和 Cursor 对话,在案例部分会介绍完整制作过程。 六、全局搜索 还可把它当作简易的 AI 搜索工具,让它根据现有文件夹下的内容回答问题,比如问到基于文件内容,温度值设置的误区在哪里,回答准确度很高,甚至能定位到具体文件的行。
2025-02-17
如何制作动漫角色工作的AI视频
以下是制作动漫角色工作的 AI 视频的相关方法和建议: 一、准备工作 1. 想出点子 最佳免费选项: 付费选项:4.0,但由于与互联网连接,必应可能更好 2. 选择工具 用于在视频中为人脸制作动画的。 用于从文本创建视频的 最佳语音克隆: 二、制作流程 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 三、解决技术问题的策略 1. 面对一致性的挑战时,尽可能保持叙事性内容中角色的关键特征和外轮廓的一致。 2. 保持角色的位置一致性。 3. 减少故事中需要观众记住的角色数量。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。同时,深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。
2025-02-17
免费生成ppt的ai工具
以下为您介绍一些免费生成 PPT 的 AI 工具: 1. 歌者 PPT(gezhe.com): 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:自定义模板、字体、动效等。 简介:是一款永久免费的智能 PPT 生成工具,用户可轻松将任何主题或资料转化为 PPT,并选择应用大量精美模板,适用于多种场景,操作便捷且智能化。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化 PPT 制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对学生和职场人士是福音。 智能化程度高,通过 AI 技术快速将资料转换成精美 PPT,高效准确。 模板和案例库丰富,总能找到适合的模版或案例。 对多语言支持实用,可一键生成目标语言的 PPT 或翻译。 几乎无需学习成本就能上手使用。 2. 讯飞智文(http://zhiwen.xfyun.cn):免费的 AI 制作 PPT 工具。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 此外,还有一些相关工具,如百度文库,有自动 PPT 功能,分为免费和付费版本。橙篇是百度文库于 2024 年 5 月 30 日发布的综合性 AI Native 产品,集多种功能于一身。
2025-02-17
我想学 AI入门
以下是新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,入门强化学习时,可参考以下学习计划:像这个链接里面:https://github.com/ty4z2008/Qix/blob/master/dl.md 就有很多资料。在学习之前先明确自己的目的,比如以搞懂 DQN 算法作为入门目标。
2025-02-17
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
设计一个图书管理系统的html,ajax异步查询id并展示图书的详细信息,包含图书封面图片,已有bookfindservlet,post请求
为了设计一个图书管理系统的HTML页面,并使用AJAX异步查询书籍ID并展示书籍的详细信息,包括封面图片,我们需要以下几个步骤: 1. 设计HTML页面 2. 编写AJAX请求 3. 处理AJAX响应并更新页面 假设我们已有一个名为`BookFindServlet`的后端服务,它接受POST请求并返回JSON格式的书籍详细信息。 1. 设计HTML页面 ```html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF8"> <meta name="viewport" content="width=devicewidth, initialscale=1.0"> <title>Book Management System</title> <style> body { fontfamily: Arial, sansserif; margin: 20px; } bookdetails { margintop: 20px; display: none; } bookdetails img { maxwidth: 200px; display: block; marginbottom: 10px; } </style> </head> <body> <h1>Book Management System</h1> <label for="bookid">Enter Book ID:</label> <input type="text" id="bookid" name="bookid"> <button onclick="fetchBookDetails">Search</button> <div id="bookdetails"> <h2>Book Details</h2> <img id="bookcover" src="" alt="Book Cover"> <p><strong>Title:</strong> <span id="booktitle"></span></p> <p><strong>Author:</strong> <span id="bookauthor"></span></p> <p><strong>Description:</strong> <span id="bookdescription"></span></p> </div> <script> function fetchBookDetails { const bookId = document.getElementById.value; const xhr = new XMLHttpRequest; xhr.open; xhr.setRequestHeader; xhr.onreadystatechange = function { if { const response = JSON.parse; if { document.getElementById.src = response.coverImage; document.getElementById.innerText = response.title; document.getElementById.innerText = response.author; document.getElementById.innerText = response.description; document.getElementById.style.display = 'block'; } else { alert; document.getElementById.style.display = 'none'; } } }; xhr.send; } </script> </body> </html> ``` 2. 编写AJAX请求 在上面的HTML文件中,`fetchBookDetails`函数使用`XMLHttpRequest`来发送AJAX请求。这些步骤详细解释如下: 1. 获取用户输入的书籍ID:从输入框中读取用户输入的书籍ID。 2. 创建并配置XMLHttpRequest对象:使用`POST`方法向`BookFindServlet`发送请求,并设置请求头以指示发送的内容类型。 3. 处理响应: 如果请求成功(即状态码为200),解析JSON响应。 更新页面上的元素以显示书籍的详细信息(如封面图片、书名、作者和描述)。 3. 处理AJAX响应并更新页面 响应处理部分的JavaScript代码如下: ```javascript xhr.onreadystatechange = function { if { const response = JSON.parse; if { document.getElementById.src = response.coverImage; document.getElementById.innerText = response.title; document.getElementById.innerText = response.author; document.getElementById.innerText = response.description; document.getElementById.style.display = 'block'; } else { alert; document.getElementById.style.display = 'none'; } } }; ``` 总结 通过上述步骤,我们创建了一个简单的图书管理系统HTML页面,使用AJAX向后端服务发送查询请求,并在收到响应后动态更新页面内容。这种方法使用户能够在不刷新页面的情况下查看书籍的详细信息,提高了用户体验和系统的交互性。
2024-05-22
streamlit是什么
Streamlit 是一个用于数据科学和机器学习的 Python 库,它允许开发人员创建可视化应用程序,而无需编写复杂的前端代码。Streamlit 库的核心是一个基于 Python 的微服务架构,它使用 Flask 作为其 Web 服务器,并使用 React 作为其前端库。Streamlit 库提供了一个简单的 API,允许开发人员创建可视化应用程序,而无需了解 HTML、CSS 或 JavaScript。它还提供了一个内置的模板系统,允许开发人员快速创建可视化应用程序,并在本地或云端部署它们。 Streamlit 库的一个主要优势是它的易用性。开发人员可以使用 Python 代码创建可视化应用程序,并在几分钟内将它们部署到云端。此外,Streamlit 库还提供了一个强大的社区,开发人员可以在其中分享他们的代码和经验,并获得帮助和支持。 总的来说,Streamlit 是一个强大而易用的库,它为数据科学和机器学习开发人员提供了一个快速、简单的方法来创建可视化应用程序。
2024-05-14
音频驱动视频人物口型
以下是关于音频驱动视频人物口型的相关信息: PixVerse V3 : 本次更新内容丰富,包括已有能力升级,提供更精准的提示词理解能力和更惊艳的视频动态效果。 支持多种视频比例,如 16:9、9:16、3:4、4:3、1:1。 Style风格化功能重新回归升级,支持动漫、现实、粘土和 3D 四种风格选择,同时支持文生视频和图生视频的风格化。 全新上线了 Lipsync 功能,在生成的视频基础上,允许用户输入文案或上传音频文件,PixVerse 会自动根据文案或音频文件内容,对视频中的人物口型进行适配。 还有 Effect 功能,提供 8 个创意效果,包括变身僵尸、巫师帽、怪兽入侵等万圣节主题模板,一键实现创意构思。并且 Extend 功能支持将生成的视频再延长 5 8 秒,且支持控制延长部分的内容。 字节跳动开源的 LatentSync : 是精准唇形同步工具,能够自动根据音频调整角色嘴型,实现精准口型同步,无需复杂中间步骤。 提出“时间对齐”技术,解决画面跳动或不一致问题,效果显著。 具有开箱即用的特点,预训练模型加持,操作简单,支持高度定制化训练。 GitHub 链接:https://github.com/bytedance/LatentSync 论文链接:https://arxiv.org/pdf/2412.09262
2025-02-16
如果想用几张照片,驱动自己的数字人视频,有哪个平台可以搞
以下是一些可以用照片驱动生成数字人视频的平台及使用方法: 1. HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法: 点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。 上传后效果如图所示,My Avatar处显示上传的照片。 点开大图后,点击Create with AI Studio,进入数字人制作。 写上视频文案并选择配音音色,也可以自行上传音频。 最后点击Submit,就可以得到一段数字人视频。 2. DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法: 点击上面的网址,点击右上角的Create vedio。 选择人物形象,你可以点击ADD添加你的照片,或者使用DID给出的人物形象。 配音时,你可以选择提供文字选择音色,或者直接上传一段音频。 最后,点击Generate vedio就可以生成一段视频。 打开自己生成的视频,可以下载或者直接分享给朋友。 3. KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法: 点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。 点击开始创作,选择自定义照片。 配音时,你可以选择提供文字选择音色,或者直接上传一段音频。 打开绿幕按钮,点击背景,可以添加背景图。 最后,点击生成视频。 4. 出门问问Mobvoi:提供了照片数字人的工作流及语音合成(TTS)API,可参考相关效果展示及工作流作者、创意策划等信息。 5. 剪映数字人“个性化”: 尽管剪映有很多公模数字人,但私模数字人更受欢迎。 使用方法: 第一步打开谷歌浏览器,点击链接https://github.com/facefusion/facefusioncolab 并点击open colab就进到程序主要运行界面,在右上角点击“代码执行程序”选择“全部运行”就行,无需安装,无需付费。点击红框对应的URL就会打开操作界面。 第二步,点击“source”上传自己的照片和“target”上传之前的剪映数字人视频,保持默认参数,点击“START”就能生成。 第三步:等着自己专属的数字人视频出炉。
2025-02-07
音频驱动视频
以下是关于音频驱动视频的相关信息: INFP:字节二元交互的新型音频驱动头部动画生成技术 用户输入一段对话音频,可以自动驱动两个数字人头像自然对话,不需要手动区分对话。AI 可以动态地在说话和聆听状态之间交替,实现自然的口型同步和头部与面部表情动作。它适应多种画风图像,支持歌唱、采访、对话(可以实现多 Agent 实时对话)等场景环境。 地址:https://grisoon.github.io/INFP/ LTX Studio:Face Expression 控制角色表情 LTX Studio 的新功能 Face Expression 可轻松完全控制角色的面部表情。可以从预设情绪中快速选择,在几秒钟内调整角色的表情,也可以使用自定义控件微调眼睛、嘴巴或眉毛等特定特征,打造所需的确切情感。 【TecCreative】帮助手册中的相关内容 音频驱动多场景数字人:支持音频和场景数字人一键合成,快速生成数字人口播视频。操作指引:上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成。音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 谷歌 Generating audio for video 为了生成更高质量的音频,并增加引导模型生成特定声音的能力,在训练过程中添加了更多信息,包括人工智能生成的注释,其中包含声音的详细描述和口语对话誊本。通过对视频、音频和附加注释进行训练,技术可以学会将特定音频事件与各种视觉场景联系起来,同时对注释或文本中提供的信息做出响应。
2025-01-24
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
AI驱动的自动化任务在PC端
以下是为您介绍的两个与 AI 驱动的自动化任务在 PC 端相关的产品: 1. Design Buddy:这是一个 Figma 插件,作为协作伙伴发挥作用,能对 UI 设计提供深入反馈。它涵盖布局、颜色、排版、可访问性等方面的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中常被忽视的缺陷,减少未来修订需求。 2. AI Employe:这是一个开源、由 GPT4 视觉驱动的工具,用于自动化浏览器环境中的复杂任务。用户可通过在浏览器中概述和演示任务来创建工作流程,它能自动执行类人智能任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统,只记录浏览器更改,不捕获屏幕、麦克风或摄像头,还能从图表、复杂表格和基于图像的 OCR 提供独特见解。
2024-12-26
请分点介绍数据驱动建模的特点。有图片就更好了
很抱歉,目前没有关于数据驱动建模特点的图片及相关详细内容。但一般来说,数据驱动建模具有以下几个特点: 1. 基于大量数据:依赖丰富的数据来构建模型,数据量越大,模型可能越准确。 2. 自动发现模式:能够自动从数据中挖掘和发现潜在的模式和规律。 3. 适应性强:可以根据新的数据进行调整和优化,以适应不断变化的情况。 4. 客观性:结果主要由数据决定,减少了主观因素的影响。 5. 预测能力:能够对未知的数据进行预测和推断。
2024-09-10
AI提示词系统课程有哪些
以下是一些 AI 提示词系统课程: 1. 藏经阁个人专栏中的课程: LangGPT 社区年度分享:AI 交流的艺术 系统论述文章:构建高性能 Prompt 之路—结构化 Prompt Prompt 进阶—提示链(Prompt Chain)和多提示词协同 LangGPT—让人人都能编写高质量 Prompt 提示工程培训:入门到精通系列课程 2. 《雪梅 May 的 AI 学习日记》中的课程: 2024 年 7 月 19 日至 21 日的 DAY33 至 DAY35 吴恩达的 prompt 课程 目录:吴恩达讲 Prompt ChatGPT 提示工程中文翻译版(仅用于学习分享) 3. 从零开始:AI 视频制作小白的成长之路中的相关内容,但主要是关于提示词应用的案例和经验,而非具体的课程。
2025-02-15
大模型如何使用应用系统数据
大模型使用应用系统数据可以通过检索增强生成(Retrieval Augmented Generation,RAG)技术来实现。 RAG 是一种结合检索和生成的技术,能够让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,当用户给出输入,如问题或话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出相关的文本片段,这些片段称为上下文。然后,RAG 将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望的输出,如答案或摘要。最后,RAG 从大模型的输出中提取或格式化所需信息返回给用户。 从大模型的整体架构来看,其分为以下几层: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。这里的数据层指的是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练所用数据为图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-14
你能系统性的概述一下ai的能力包含哪些吗
AI 的能力主要包含以下方面: 1. 在品牌卖点提炼中: 逻辑推理:通过分析数据和信息,为寻找品牌卖点提供思路。 数据分析:快速处理和分析相关数据,提取有价值的信息和模式。 内容理解和输出:理解用户提供的内容,按照正确结构梳理并输出有效的内容。 但需要注意的是,AI 对公司的具体情况了解程度接近于 0,更适合作为引导型助手,在思考路径停滞时提供更多思考维度。 2. 在网页浏览模拟中: 像 GPT4VAct 这样的多模态 AI 助手能够模拟人类通过鼠标和键盘进行网页浏览的行为。 它可以通过视觉理解技术识别网页元素,目的是自动完成一些人工操作任务,提高工作效率。 3. 在通用人工智能(AGI)的发展等级中: 聊天机器人:具备基本对话能力,依赖预设脚本和关键词匹配,用于简单服务和查询响应。 推理者:具备人类推理水平,能解决复杂问题,如 ChatGPT。 智能体:不仅能推理,还能执行全自动化业务,但目前仍需人类参与。 创新者:能够协助人类完成新发明,如预测蛋白质结构等。 组织:最高级别,能自动执行组织的全部业务流程。
2025-02-14
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
deepseek总是提示系统繁忙,如何解决,如果本地部署的话能解决吗,能的话怎么部署
DeepSeek 总是提示系统繁忙,目前本地部署并不适合普通用户。纳米 AI 搜索是较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址为: 如果您想进行本地部署,在 Linux 上部署相对简单,但需要有一张 4G 以上显存的 GPU 显卡。简单步骤如下: 1. 下载代码仓库。 2. 安装依赖(注意有两个依赖未放在 requirements.txt 里)。 3. 启动 webui 的 demo 程序,然后用浏览器登陆服务器的 ip:8080 就能试玩。这个 demo 本身提供了 3 个参数: server_name:服务器的 ip 地址,默认 0.0.0.0。 servic_port:即将开启的端口号。 local_path:模型存储的本地路径。 4. 第一次启动后生成语音时,需要看下控制台输出,它会下载一些模型文件,因此比较慢,而且可能因为网络的问题有各种失败。但是第一次加载成功了,后面就顺利了。 5. 基于这个基础已经可以开始拓展了,比如把它集成到 agent 的工具中去,比如结合 chatgpt 来做更拟人化的实时沟通。 6. webui 上可以设置的几个参数说明: text:指的是需要转换成语音的文字内容。 Refine text:选择是否自动对输入的文本进行优化处理。 Audio Seed:语音种子,这是一个数字参数,用于选择声音的类型,默认值为 2,是一个很知性的女孩子的声音。 Text Seed:文本种子,这是一个正整数参数,用于 refine 文本的停顿。实测文本的停顿设置会影响音色,音调。 额外提示词(可以写在 input Text 里):用于添加笑声、停顿等效果。例如,可以设置为。
2025-02-12
我该如何系统学习ai
以下是系统学习 AI 的一些建议: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习筑牢根基。 2. 尝试使用 AI 工具和平台:例如 ChatGPT、Midjourney 等生成工具,体验其应用场景。也可以探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程,掌握主要技术如机器学习、深度学习等,同时学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,锻炼动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,要从编程基础、工具体验、知识学习、实践项目等多方面着手,全面系统地学习 AI 知识和技能。 另外,《雪梅 May 的 AI 学习日记》中提到,学习 AI 要注重系统性,避免碎片化输入,比如可以通过看书听课进社区的方式。初期可以系统地看书听课,了解 AI 的底层原理和发展历程。同时,加入像“通往 AGI 之路”这样的开源社区,按照新手指引入门,能帮助您少走弯路,更高效地学习。
2025-02-11