Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

知识图谱产品

Answer

知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。

知识图谱于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。

知识图谱的关键技术包括:

  1. 知识抽取:通过自动化的技术抽取出可用的知识单元,包括实体抽取(命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体)、关系抽取(从数据源中提取实体之间的关联关系,形成网状的知识结构)、属性抽取(从数据源中采集特定实体的属性信息)。
  2. 知识表示:属性图、三元组。
  3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库。包括实体对齐(消除异构数据中的实体冲突、指向不明等不一致性问题)、知识加工(对知识统一管理,形成大规模的知识体系)、本体构建(以形式化方式明确定义概念之间的联系)、质量评估(计算知识的置信度,提高知识的质量)、知识更新(不断迭代更新,扩展现有知识,增加新的知识)。
  4. 知识推理:在已有的知识库基础上挖掘隐含的知识。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Knowledge Engineering|知识工程|AI|1||||ROW()-1|Knowledge Graph|知识图谱|AI|1||||ROW()-1|Knowledge Representation|知识表征|AI|1||||ROW()-1|Kronecker Product|Kronecker积|AI|||||ROW()-1|Krylov Method|Krylov方法|AI|||||ROW()-1|L-BFGS|L-BFGS|AI|||||ROW()-1|Label|标签/标记|AI|||||ROW()-1|Label Propagation|标记传播|AI|||||ROW()-1|Label Smoothing|标签平滑|AI|1||||ROW()-1|Label Space|标记空间|AI|||||ROW()-1|Labeled|标注|AI|1||1||ROW()-1|Lagrange Dual Problem|拉格朗日对偶问题|AI|||||ROW()-1|Lagrange Duality|拉格朗日对偶性|AI||||

知识图谱

知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。知识图谱于2012年5月17日被Google正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将Web从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。[heading2]关键技术[content]1.知识抽取:通过自动化的技术抽取出可用的知识单元实体抽取:命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体;关系抽取(Relation Extraction):从数据源中提取实体之间的关联关系,形成网状的知识结构;属性抽取:从数据源中采集特定实体的属性信息。2.知识表示属性图三元组3.知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库实体对齐(Entity Alignment):消除异构数据中的实体冲突、指向不明等不一致性问题;知识加工:对知识统一管理,形成大规模的知识体系本体构建:以形式化方式明确定义概念之间的联系;质量评估:计算知识的置信度,提高知识的质量。知识更新:不断迭代更新,扩展现有知识,增加新的知识4.知识推理:在已有的知识库基础上挖掘隐含的知识

AI编程与炼金术:Build on Trae

蓝色文字跳转到文档对应位置)(不断更新)|章节_[三.使用DeepSeek R1给老外起中文名](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-DyEMdmCPOo98S6xbPfNcsuEOnuh)|知识点_[Node.JS安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PVnndBSV5oWOukx38tKcw2CPnub)|[申请DeepSeek R1 API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-TrXednqLAoH3VLxrUiYc1Pb9nhf)|[网页接入DeepSeek API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UK5xdzhiaoo9RkxHR5bcs30pnV8)||-|-|-|-||[一.Trae的介绍/安装/疑难杂症](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R4GvdgOzeoC9mOxd1hScuql6nVY)|[Python安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Kcojdhid9oWJPjxAvEOczRt0nkg)||||[二.图片字幕生成器](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Yev6dqzNmolizDxG2PWcKj8Pn8y)|[用多模态复刻产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PHwVdl7gCoZEehxUmiUcDeO8nde)||||[四.DeepSeek R1驱动的Life Coach](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-AyjYdKtFhobv6Zxrq71cYJubnug)|[使用AI Rules](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-MBCsdTfLzoRnE9xQm3PcWgdFnEf)|[使用Git进行版本管理](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-S86bdFV1XoE66LxBqVhcqdYFnze)|[Github+Vercel进行云端部署](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-GgVmdqPMqoilxFxONuCcnbNpn2g)||[五.DeepSeek驱动的网页金句卡片生成](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-ZDQHd6QnqoH7SEx3UXwchSOEndc)|[使用Chat完善产品需求(PRD)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Q21mdyyRIoKZfdxT7rZcwD5lnwd)|[开发浏览器插件](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Mgsvd3OnZousC0x3m3fcqRBanhd)|[Chrome插件logo自动生成](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-J4dcdT2IAoJUXhx2UKKcElR0n6g)||[六.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-MbTBdqIKBowgXExFCLqcQ0KTn5c)|[创建带有AI能力的飞书多维表格](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R94pdLmyio0NCpxXUGzcJIMonTe)|[用网页呈现多维表格里的内容](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-KMaCd5GQKopqChxO2KycXXG3n5c)|||[七.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)(下)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UDIsdsmulox4LcxK2CdcwjGgny6)|[浏览器插件将信息一键插入多维表格](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-O1B2djb7voeVsUxJxLHcyyo6n3c)|[将复杂产品分拆成多个简单产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UOx6dg3aVoeaYpx7M6hcurwUnGc)||

Others are asking
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-03-21
知识图谱构建
知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱构建的关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,如实体抽取(命名实体识别)、关系抽取(提取实体间关联关系)、属性抽取(采集特定实体的属性信息)。 2. 知识表示:包括属性图、三元组等。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐(消除实体冲突等不一致性问题)、知识加工(统一管理知识)、本体构建(明确定义概念联系)、质量评估(计算知识置信度)、知识更新(迭代扩展知识)。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 LLM 落地思考方面,NLP 与知识图谱是主要的落地类型,但存在一些问题。如实现某个 NLP 任务时,需要大量人工标注和长时间训练,交付后较难新增意图和泛化任务,有时使用句式规则方式更好维护更新;构建知识图谱复杂,需与行业专家深度讨论,预见企业长远业务发展制定 schema,周期长且易与业务错位。而 LLM 出现后对 NLP、NLG、KG 有较大提升,带来更好更多的落地可能。 在以问题驱动的 AI+内容创作中,随着学习深入,可使用大模型帮助构建和扩展知识图谱。
2025-02-27
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-02-27
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12
以知识图谱的形式生成一张涉及大模型概念的知识图谱
以下是一张涉及大模型概念的知识图谱: 大模型 Embedding 技术 句子和文档嵌入 Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。 Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。 Transformers Sentence Embeddings:如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入 Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 图 Embeddings:用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 关键技术标准 机器学习标准:规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。 知识图谱标准:规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 大模型标准:规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。 自然语言处理标准:规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。 智能语音标准:规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。 计算机视觉标准:规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。 生物特征识别标准:规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。 国内大模型 通用模型:如文心一言、讯飞星火等,处理自然语言。 垂直模型:专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 大模型的体验 以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了 Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。 大语言模型的工作原理 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用 b 链形容大小。 Transformer 架构:Transformer 是大语言模型训练架构,17 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 的分类和法则 分为 system prompt、user prompt 和 assistant prompt。 写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG 概念:未对 RAG 的具体内容进行详细阐述,仅提出了这个概念。
2025-02-11
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
推荐网内有关DeepSeek知识
以下是为您推荐的有关 DeepSeek 的知识: 微博上热搜,主流媒体全报道。 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧,链接:https://zhuanlan.zhihu.com/p/20544736305(错误) 宝玉:教你如何破解 DeepSeek R1 系统提示词,类型:提示词破解,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,类型:基础认知,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,类型:基础认知,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,类型:基础认知,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 一支烟花 AI:用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,类型:基础认知,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,类型:基础认知,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,类型:进阶思考,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 此外,在《雪梅 May 的 AI 学习日记》中也有相关内容,如: 学习材料: 还有 1 月 30 日社区动态速览中的《》,详细讲述了 DeepSeek 相关的基本术语、省钱原因、蒸馏工作原理等。
2025-03-21
请给出知识库中关于dify的文章和教学视频
以下是关于 Dify 的相关内容: 如何接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 小七姐相关的提示词知识库文章索引: RAG 提示工程系列(3)|迈向工程化应用中关于 Dify 的介绍: Dify 是一个开源的大模型应用开发平台,它通过结合后端即服务和 LLMOps 的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式 AI 应用。 该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词 IDE,以及一个全面的 RAG Pipeline,用于文档处理和检索。 Dify 还允许用户定义 Agent 智能体,并通过 LLMOps 功能对应用程序的性能进行持续监控和优化。 Dify 提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。 Dify 的设计理念注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实,无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都提供了相应的支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 一般地,如果是个人研究,推荐单独使用 Dify,如果是企业级落地项目推荐使用多种框架结合,效果更好。
2025-03-21
我想快速学习AI agent相关知识,请问有什么视频可以快速入门?
以下是一些可以帮助您快速入门 AI agent 相关知识的视频资源: 1. 元子的“Agent 板块”相关内容: 链接: 用法:从下往上看,一个一个点进去,都有视频。 注意事项:共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。如果觉得内容较多,可以先从听过的工具开始,避免太累。 2. 大圣分享的《Coze 全流程搭建》: 视频时间点及内容: AI agent 共学小组:扣子入门分享 AI agent——解决人工智能编写难题的新利器 关于 AI agent 的介绍及扣子的使用 介绍如何创建 GPT 4 免费使用的小 bot 并了解 cos 界面 如何利用 AI 实现智能客服 关于知识库的使用及文档要求 如何使用知识库和工作流让机器人调用知识库生成回答 如何利用工作流、大模型、代码节点和变量节点构建知识库 3. 元子的“从常见工具开始——都体验一遍”相关内容: 工具入门篇(AI Agent):Agent 工具小白的 Coze 之旅 文章链接: 视频链接:Coze 之旅 1.0: 适用人群:完全没有编程基础,但对 AI 已有一点概念的小白 简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它 您可以根据自己的情况选择适合的视频进行学习。
2025-03-21
我是一名 C 端用户产品经理,想转行做 AI 产品经理,应该从哪里入手
如果您作为一名 C 端用户产品经理想转行做 AI 产品经理,可以从以下几个方面入手: 1. 学习 Prompt 提示词:了解 Prompt 提示词的概念和应用,参考相关文档如 https://www.promptingguide.ai/zh ,掌握通过 Prompt 提示词解决产品经理日常工作场景的方法,例如行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器等场景。 2. 了解行业动态:关注 AI 行业的最新发展和趋势,通过混入各种相关群,与不同的人交流业务和技术,获取最新信息。 3. 弥补知识差距:由于 AI 技术发展迅速,可能存在技术与业务之间的知识断档。需要努力弥补自己在技术和业务方面的不足,熟悉相关技术知识,同时深入理解业务需求。 4. 积累项目经验:可以尝试参与一些 AI 相关的项目,哪怕是免费为相关人员提供服务,以积累实际经验。 5. 分析成功案例:研究已有的 AI 产品,了解其成功的因素和实现方式。
2025-03-22
你觉得小智ai怎么样?直播如何使用并销售小智ai产品?
小智 AI 的情况如下: 关于小智 AI 本身的评价未在提供的内容中有明确提及。 对于直播使用并销售类似的 AI 产品,以下是一些相关信息: 变现渠道包括直播带货、橱窗带货、商单、介绍粉丝接项目、广告等。 直播带货方面: 数字人直播工具软件可分为实时驱动和非实时驱动两类,实时驱动价格较高,非实时效果差且价格混乱。 数字人运营服务可按直播间成交额抽佣。 适用品类和场景: 适用于不需要强展示的商品,如品牌食品饮料;适用于虚拟商品,如门票、优惠券等;店播效果较好,不适用于促销场景。 面临的问题: 平台限制,如平台担心直播观感而有打压限制。 技术限制,形象依赖大模型技术提升。 需求限制,目前更多是体验新鲜感。 伦理/法律限制,如声音、影像版权等。
2025-03-22
AI产品经理学习路径
以下是为您提供的 AI 产品经理学习路径: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程来了解 AI 的概念。 能够使用 AI 产品,并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 说到底也是工具和手段,产品经理要关注的还是场景、痛点、价值。
2025-03-22
做电商的话如何使用AI结合拍摄的产品图片生成推广图片和视频
以下是关于在电商中使用 AI 结合拍摄的产品图片生成推广图片和视频的方法: 虚拟数字人结合产品做视频: 1. 添加产品/介绍背景:如果有自己的视频/图片素材可以使用,没有的话可以根据搜索添加。 2. 扣像结合背景:在剪映中把数字人扣下来,导入视频,点击画面选择抠像,点击智能抠像,调整到合适的大小和位置。 3. 添加字幕和音乐:智能识别字幕,可搜索添加音乐或手动添加自己喜欢的音乐。 使用数字人无需真人模特: 只需上传产品图片,数字人即可手持产品进行口播展示。支持语音和口型同步,动作、姿势定制,提供 1000 多种国家数字人模特,覆盖全球 28 种语言,能快速生成产品宣传视频,省去拍摄烦恼。在线体验: 。 此外,使用 AI 来完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。
2025-03-22
请问普通人怎么从事ai产品经理
普通人要从事 AI 产品经理,可以从以下几个方面入手: 1. 技术背景:具备扎实的编程、算法工程、AI 应用开发、后端开发等技术知识,这对于理解和推动 AI 产品的开发至关重要。 2. 产品开发与管理经验:积累互联网和 AI 产品开发方面的经验,提升项目管理与执行能力,以推动产品的落地与优化。 3. 多元化应用场景:了解 AI 在 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等各行业的应用。 4. 学习与技能提升:处于 AI 技术初学阶段的人,要通过学习提升技能,并将其应用到实际工作和生活中。 5. 工具使用:广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等,培养对工具的熟悉度和运用能力。 6. 协作与共学:积极参与各种 AI 学习社群和线上线下活动,与他人共学交流,提升技能与认知。 7. 内容创作:具备自媒体运营、视频制作、文案策划等内容创作能力。 8. 营销与品牌运营:掌握商业化路径,将 AI 技术与商业化需求结合,提供完整解决方案。 9. 活动策划与执行:积累活动策划和运营经验,具备资源整合和组织协调能力。
2025-03-21
请问如何参与ai产品经理
以下是参与 AI 产品经理的一些示例和相关信息: |序号|姓名/昵称|擅长领域/岗位|想法/方向|优势| |||||| |12|秦超|AI 2C 项目负责人|产品落地服务|产品、技术架构,项目管理经验| |13|kaikai|技术实践者|多 Agent 处理任务流|技术实践,团队合作| |14|Cici🦾|AI 算法开发|宠物与 AI 结合|AI 产品研发和创业经验| |15|BIN 陈裕彬|CTO|AI 绘画精灵、AI 推文小说视频生成器|爆款 AI 小程序作者| |16|11 鸭鸭呀|产品经理|智能写作产品|Prompt 撰写,AI 应用经验| |17|zz|AI 产品经理|效率工具和游戏方向|大厂经验,AI 产品经理| |18|天天向上|AIGC 爱好者|AI 配音应用|配音演员,AI 预告片制作| |19|烦烦烦🧢🍻|产品经理|企业服务 AI 应用|PRD 输出,前端开发能力| |20|周文斌|产品业务负责人|AI 创业|产品规划和研发经验| |21|Wilson·W|咨询顾问/服务设计师|AI 组团协作场景|GPT4.0 用户,咨询行业经验| |22|王蒙|程序员|AI 相关开发|后端开发经验| |23|Nero|产品体验设计师|AI 绘画、AI 视频|AIGC 研究方向| |24|Suda|智能客服产品经理|数字人、AI 应用|Prompt 撰写,AI 工具经验| |25|黄钊钊|产品经理|大模型调度平台|产品落地实现能力| |26|高鹏|产品经理|AI 投资与创业|大厂经验,红杉资本背景| |50|天涯|AI 创业者|AI 领域创业|软件开发经验,连续创业者| |51|Eureka|Fintech 产品经理|AI 金融领域应用|平台化产品设计经验| |52|Zima|AI 创业者|AI+教育和 AI4Science|编程能力,AI 教育探索| |53|Mr.water🐳|AI 产品经理|AI 培训经历和部分高校教授有联系|考虑科研方向转化| |58|苏白|AI 产品经理|目前在做人机交互方面的工作|产品经理专业背景,专注于人机交互领域,北京地区| |59|豆豆|AI 社交|连续创业者,过往方向从游戏,即时通讯到 AI 社交,现对 AI 社交进行深入研究|在 AI 社交领域有丰富经验,成都地区,寻求同方向交流与合作| |60|星华|AI 爱好者|曾参加两次创业大赛,获得一次一等奖、一次二等奖,寻求团队合作|虽不懂技术,但擅长项目包装,具有团队合作精神| |61|半日闲|AIPM|进群学习,提升 AI 领域知识|积极学习态度,愿意与他人交流学习| |62|丁白杨|软件公司经理|在 AI 在 to B 领域的探索|拥有 25 年企业信息化从业经验,上海地区,寻求思维碰撞与合作| 您可以参考以上人员的经历和优势,结合自身情况,找到适合自己参与 AI 产品经理的方式和方向。
2025-03-21