Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何使用stable diffusion 生成模特换装的工作流

Answer

Stable Diffusion 是一种强大的生成模型,常用于图像生成和修改任务。利用 Stable Diffusion 实现模特换装可以通过以下步骤和工作流程进行:

工作流程

  1. 准备环境

    • 确保你有合适的硬件配置,特别是具有高性能 GPU 的计算机。
    • 安装必要的软件和依赖项,如 Python、CUDA、PyTorch 等。
  2. 获取模型

    • 下载并安装 Stable Diffusion 模型。
    • 可以从 Hugging Face 的模型库中找到合适的预训练模型,也可以使用自己的数据进行微调。
  3. 数据准备

    • 模特图像:准备高质量的模特图像,确保背景简单以便后续处理。
    • 服装图像:收集或创建各种服装的图像,最好是带有透明背景的 PNG 格式。
  4. 图像预处理

    • 使用图像编辑工具(如 Photoshop 或 GIMP)将模特图像和服装图像裁剪成合适的大小和比例。
    • 如果需要,可以使用 OpenCV 或 PIL 进行自动化预处理。
  5. 定义输入格式

    • 将模特图像和服装图像输入 Stable Diffusion 模型的方式需要提前定义。
    • 典型输入包括模特的基本特征(如位置、姿态)和服装的特征(如颜色、纹理)。
  6. 生成换装图像

    • 使用 Stable Diffusion 模型,输入模特图像和服装图像,生成换装后的模特图像。
    • 可以调整生成参数(如扩散步数、采样方法)以获得最佳结果。
  7. 后处理

    • 对生成的图像进行后处理,如调整亮度、对比度,或者进一步修正细节。
    • 使用图像编辑工具或自动化脚本完成后处理步骤。
  8. 评估和优化

    • 评估生成图像的质量,根据需要进行微调或更改模型参数。
    • 可以使用人工评估或引入评价指标(如 FID、IS 分数)进行量化评估。

示例代码

以下是一个简化的 Python 示例代码,展示如何使用 Stable Diffusion 模型进行图像生成:

import torch
from transformers import StableDiffusionPipeline

# 加载模型
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

# 准备输入
prompt = "A model wearing a red dress standing on a white background"

# 生成图像
image = pipe(prompt).images[0]

# 保存图像
image.save("output.png")

工具和资源

  1. Hugging Face

    • 提供预训练的 Stable Diffusion 模型和相关文档。
    • 链接:Hugging Face
  2. OpenCV 和 PIL

    • 用于图像预处理和后处理。
    • 安装:pip install opencv-python pillow
  3. 图像编辑工具

    • 如 Photoshop 或 GIMP,用于手动处理图像。

提示

  • 硬件要求:高性能的 GPU 可以显著加快图像生成速度。
  • 数据质量:高质量的输入图像和精细的预处理可以提高生成图像的效果。
  • 参数调整:根据生成结果不断调整模型参数以获得最佳效果。
  • 模型微调:如果预训练模型不能完全满足需求,可以考虑使用自己的数据集进行微调。

通过这些步骤和工具,您可以使用 Stable Diffusion 模型生成模特换装的图像,创建高质量的视觉效果。

Content generated by AI large model, please carefully verify (powered by aily)

References

教程:超详细的Stable Diffusion教程

假如我现在有一张非常好看的照片,唯独我觉得她的衣服不好看,那我要怎么在不改变其它地方的情况下,给她换上更好看的衣服呢?这里用到的是图生图中局部重绘的功能,导入要调整的照片点击右边的画笔可以调整大小,把人物衣服部分全部涂黑接着输入关键词,先输入质量词(如:高质量,高清画质,8k等)然后描写一下你想要生成什么样的衣服比如我这里输入的就是:粉色汉服,精致的裙子,极具细节的服装负面关键词就直接复制我们前面用的点击生成就可以啦!同样的道理,我们还可以用这个功能来换脸,只是我们涂黑的部分就变成了脸,输入的关键词就是描写脸部、五官的单词。上面的方法用来换衣服只能整体去换,如果我想指定衣服的颜色就只能在关键词里面告诉SD要怎么调整假如现在我想指定服装的颜色,比如:蓝色的衣袖,粉色的衣服,还要有黄色的花纹这时候我们只靠关键词是不行的,出来的照片也不一定准确那我们就可以用到一个新的功能——“涂鸦重绘”导入照片之后,在右边调整画笔大小和颜色,然后就可以自己设计衣服的颜色啦

教程:超详细的Stable Diffusion教程

通过输入关键词,我们已经能够生成一张稍微好看一点的小姐姐的照片了,但是现在我想要生成5678张照片,而且我要出来的照片都是同一张脸,这怎么办呢?这时候我们就要用到Lora模型简单来说,Lora可以固定我们照片的特征:人物特征、动作特征、还有照片风格点击“生成”下面的的第三个按钮,就会弹出新的选项框找到Lora,就会出现我们下载保存到电脑的Lora模型点击我们要用的Lora,就会自动添加到关键词的文本框里面前面那四张照片用到的就是这三个Lora,由此可见,我们的Lora是可以叠加使用的但是建议新手不要使用太多lora,因为这样照片出问题了,你也不知道是哪个Lora有问题另外,Lora之间一样用英文逗号隔开每个Lora后面都有数字,这是用来调整这个Lora的权重的,正常情况下是1,我们一般只会去降低权重,因为增加权重照片可能就会变得奇奇怪怪每个Lora设置的权重不一样,出来的照片就会不一样想要生成一个好看的小姐姐,就要多去尝试不同的权重组合现在问题又来了,我们怎么选择Lora呢?这个问题就要回归到你最开始想要生成什么样的照片

我用Stable Diffusion做电商!

如果你要开淘宝网店,那么在淘宝网页上展示的商品就要漂亮精致,紧紧抓住消费者的心♥!我们可以借助AI作图工具,简单地代替请模特特地搞拍摄的过程啦!这里介绍很简单的利用AI绘画局部逐渐美化女装商品展示图的方法。我是运营网店的女装店主,我没有钱请模特了。。。我可以用stable diffusion来初步制作自己的展示商品!比如我这里要卖这个绿色的淑女裙。(左图)我尝试了直接拿真人穿的衣服抠出来生成,效果很不好。(右图)借鉴了一些视频和方法,我总结了一些我觉得实用性较高,也比较简单的步骤。我觉得局部重绘是比较合适和真实的方法。真人穿衣服拍照。拿到穿衣服的比较真实质感的照片。【如果是身材方面有点难处那就借助美图秀秀or ps吧】ok,比如我(不具有做模特资质的小美女)穿好了我卖的漂亮衣服摆好pose摆几张啦!选好底模!一定要是realistic的,真人照片风格的底模。我这里选的是很经典的majicmixRealistic_v7。换头,根据不同平台换头!比如面向海外市场的,就得换白女头吧。面向中老妇女的,换妈妈头。ok,我这里换白女头,比如我要放在亚马逊上卖。操作就是图生图下的局部重绘选项卡下涂抹自己替换的部分。prompts & parameters

Others are asking
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
社区有关于stable diffusion 的教程吗
以下是为您找到的关于 Stable Diffusion 的教程: 知乎教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识,目录包括: Stable Diffusion 系列资源 零基础深入浅出理解 Stable Diffusion 核心基础原理,包含通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍 Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、Stable Diffusion 生成示例 Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括 Stable Diffusion 训练资源分享、模型训练初识、配置训练环境与训练文件 其他教程: 了解 Stable diffusion 是什么: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 稳定扩散(Stable Diffusion)是如何运作的:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门教程: 文字教程: 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ
2025-01-04
stabel diffusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理就好比学习画画。比如学梵高的风格,要先看他的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),但需要科学上网。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本并勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-23
Stable Diffusion基础学习
以下是关于系统学习 Stable Diffusion 的基础内容: 学习提示词: 学习基本概念,包括了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 研究官方文档和教程,学习常见术语和范例。 掌握关键技巧,如组合多个词条精确描述效果、使用特定符号控制生成权重、处理抽象概念等。 通过实践和反馈,不断总结经验,创建自己的提示词库,并持续跟进前沿。 核心基础知识: 了解 Stable Diffusion 系列资源。 零基础深入浅出理解核心基础原理,包括通俗讲解模型工作流程、读懂核心基础原理、读懂训练全过程、介绍其他主流生成式模型。 解析核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型、官方训练细节。 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同流程。 了解经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 学习从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括训练资源分享、模型训练初识、配置训练环境与训练文件。 Nenly 的零基础入门课学习资料汇总: 提供了配套的学习文档,包括随堂素材、生成信息、内容修订等。 有安装攻略和素材下载的相关内容。
2024-12-22
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点: 若在太暗情况下拍照产生的颗粒状即图像中的噪点。Stable Diffusion用于生成艺术作品,其在幕后所做的是“清理”图像,且比手机图像编辑器中的噪点消除滑块复杂得多。它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以H.R. Giger风格描绘的外星人弹吉他的图像,它能像熟练的平面艺术家一样利用对Giger艺术作品和世界的了解来清理图像。 大多数艺术生成工具中有“推理步骤”滑块,稳定扩散是逐步去除噪点的。 开始生成的方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定风格的画。稳定扩散能做到是因为它是基于统计数据的计算机程序,会估计所有选项的概率,即使概率都极低,也会选择概率最高的路径,例如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给它不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI的生图原理: ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。 Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI中的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程。在ComfyUI中,通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,会根据不同的采样策略逐步将噪声还原为图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步。在ComfyUI中,可通过控制步数来影响图像生成的精细度和质量。
2024-12-18
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
stable difusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理可以这样理解:好比学习画画,比如学梵高的风格,要先看梵高的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照这个模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),有真实系的、二次元的、游戏 CG 风的等等,但需要科学上网。
2024-12-24
stable difudion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 安装 Stable Diffusion 的电脑配置要求: 1. 查看电脑配置: 对于 Windows 系统,可以查看专用 GPU 内存。 4GB:说明电脑勉强可以跑动 SD,出图的时间会比较长。 6GB:出一张图的时间是 20 50 秒,SD 的大部分功能都可以使用。 8GB:5 20 秒可以出一张图,基本上 SD 的所有功能都对你开放。 2. Mac 系统:可以参考下面的视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761
2024-12-24
Midjourney+sd可以生成服装模特视频么
Midjourney 和 SD 可以用于生成服装模特视频。以下是一些常见的方法: 1. 方法 1【MJ 出图 + AI 视频软件】:使用 Midjourney 垫图➕描述出图,再去视频工具中转成视频。下载项里的深度图,打开 Midjourney 官网(https://www.midjourney.com/)上传深度图。局部重绘有难度,最终方式可以是分开画,比如先画个被关着的红衣服女孩,再画个二战德国士兵的背影,再合成后交给 MJ。 2. 方法 3【SD 出图 + AI 视频软件】:在 SD 的 controlnet 中上传原图,选择深度,文生图生成图片,再把生成好的图放在 AI 视频工具中进行视频生成。 同时,您还可以参考以下视频工具建议: 。另外,使用 Dreamina 图片生成功能(https://dreamina.jianying.com/aitool/image/generate)上传深度图,选择适应画布比例并填写描述,也可以实现深度图出图和出视频。
2025-01-06
ai生成服装模特视频
以下是一些与生成服装模特视频相关的 AI 技术和应用: 1. ViViD 视频虚拟试穿技术:由阿里巴巴开发,可以替换视频中人物的衣服,生成真实自然的视频,支持多种服装类型,在视觉质量、时间一致性和细节保留方面表现优异。相关链接:https://x.com/imxiaohu/status/1796019244678906340 2. 生成式人工智能在营销中的应用:Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 此外,还有一些其他相关的 AI 技术,如: 1. 山寨版阿里 Animate Anyone 开源:利用图像和视频中的人物姿势来合成动画,Novita AI 开源并提供 API 支持,提供照片和视频即可自动生成动画。相关链接:GitHub:https://github.com/novitalabs/AnimateAnyone ;API:https://novita.ai/playgroundanimateanyone ;https://x.com/imxiaohu/status/1796191458052944072 2. 音频生成方面,有 Udio130 音乐生成模型,能生成 2 分钟的音频,提升曲目连贯性和结构,新增高级控制功能。相关链接:详细:https://xiaohu.ai/p/8738 ;https://x.com/imxiaohu/status/1795999902830629249 3. 代码生成方面,有 Mistral AI 推出的 Codestral 代码生成模型,支持 80 多种编程语言,包括 Python、Java、C 等,能自动完成代码、编写测试,并能填补未完成的代码部分,拥有 32k 上下文窗口,在多项基准测试中表现出色。相关链接:详细:https://mistral.ai/news/codestral/ ;https://x.com/imxiaohu/status/1795987350713192937 4. 音乐演示方面,有 Suno 音乐演示,新视频展示从任何声音创作歌曲。相关链接:https://x.com/imxiaohu/status/1795976717905043467
2025-01-06
ai生成服装模特图的工具
以下是一些可以生成服装模特图的工具: 1. DALLE 2:已被用于广告,如亨氏、雀巢、Stitch Fix 等公司的相关应用。Stitch Fix 正在尝试使用它根据客户对颜色、面料和款式的偏好创建服装可视化。 2. 可以使用万能固定句式来生成服装模特图,如“「主题」+「风格」+「材质」+「元素」+「玄学佐料」”,并通过具体的示例和咒语关键词来实现,如“Chinese dress”。 3. TryOffDiff:能够逆向打造服装图片,将衣服从照片中“摘取”生成标准化服装图,保留图案、褶皱、徽标等精细细节,适用于商品目录制作及电商平台服装展示需求。详细介绍:
2025-01-06
目前最前沿的ai服装模特app
目前较为前沿的 AI 服装模特相关的应用有: Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 InterAlia 可以帮助搭配服装。 在小红书上,有通过 AI 制作服装如 AI 小绿裙实现变现的案例,新手可用 mewxai 或幻火来制作,熟练者可用 sd 或 mj 制作。 此外,还有用 AI 定制萌娃头像等相关应用。
2025-01-06
有没有根据布料照片和模特照片生成衣服上身效果的工具或 comfyUI 工作流
以下是一些与根据布料照片和模特照片生成衣服上身效果相关的工具和工作流: 1. 藏师傅的方法:将第二步的提示词和 Logo 图片放到 Comfyui 工作流就行。Lora 需要用到 InContext LoRA 中的 visualidentitydesign,可从以下地址下载:https://huggingface.co/alivilab/InContextLoRA/tree/main 。工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 2. 彭青云分享的内容:本地部署 Comfyui 有多种方式,如官方的本地部署包、秋叶整合包和二狗子老师制作的通往 AGI 之路黑猴子流专属包。处理好软件和模型后,打开一键启动,稍等片刻就会进入工作界面。通过正反提示词、文本链接图像,点击右侧队列即可生成图像。 3. ComfyUI BrushNet:原项目 https://tencentarc.github.io/BrushNet/ ,插件地址 https://github.com/kijai/ComfyUIBrushNetWrapper ,模型下载 https://huggingface.co/Kijai/BrushNetfp16/tree/main 。第一次运行会自动下载需要的模型,如果是用的 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet,也可手动下载放在这个文件夹里面。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。工作流方面,可配合 mj 出底图,在底图不变的基础上,添加文字或者图片内容。还可以使用 GDinoSAm(GroundingDino+Sam),检测和分割底图上的内容,做针对性的修改。
2024-12-13
推荐能作为服装电商模特的AI生成工具
以下为您推荐可作为服装电商模特的 AI 生成工具: 1. DALLE 2:已被用于广告,如亨氏、雀巢等品牌的营销中。Stitch Fix 服装公司也在尝试使用它,根据客户对颜色、面料和款式的偏好创建服装可视化。 2. TryOffDiff:具有颠覆性,能将衣服从照片中“摘取”生成标准化服装图,保留图案、褶皱、徽标等精细细节,即使原图中部分被遮挡也能准确推断,适合商品目录制作及电商平台服装展示需求。详细介绍:
2024-12-12
ai换装,目前主流工具有哪些
目前主流的 AI 换装工具包括:InterAlia(https://interalia.vcflab.org/)。需要注意的是,虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。
2025-01-02
AI 换脸换装
AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。以下是一篇关于 AI 换脸换装的文章: AI 换脸换装的方法和应用 一、整体流程介绍 数字人视频的整体制作流程,大致分为三步: 1. 创建视频内容:通过输入文稿内容,确定数字人播出的内容。 2. 生成数字人:通过工具,以及视频内容生产数字人形象及播放语音。 3. AI 换脸:通过 AI 工具,将数字人的脸,转换成你指定宣传的形象,以便以自己的品牌形式宣传。 二、AI 换脸的方法 打开 FaceFusion 软件,需要返回实例列表,点击自定义服务按钮,会打开一个新的浏览器窗口。这样,我们才能够通过 web 浏览器来访问 FaceFusion 提供的 UI 界面。在 FaceFusion 软件界面上(见上图),上传准备好的图片,视频后,在右侧可以看到预览效果。点击下方的开始按钮,执行换脸处理。执行完成后,在输出的位置,会出现处理后的视频,输出窗口的右上角有一个下载按钮,点击它你可以导出变量后的视频到本地。 三、AI 换装的方法 要实现 AI 换装,需要使用到一些图像处理和计算机视觉技术。具体来说,可以通过以下步骤实现: 1. 数据准备:首先需要准备一些包含不同服装的图片数据,这些图片可以从互联网上下载,也可以通过拍摄得到。 2. 模型训练:接下来需要使用深度学习模型对这些图片进行训练,以学习不同服装的特征和样式。可以使用卷积神经网络(CNN)或循环神经网络(RNN)等模型进行训练。 3. 图像处理:在得到训练好的模型后,需要对输入的图片进行处理,以便模型能够识别和理解图片中的服装信息。可以使用图像分割、特征提取等技术进行处理。 4. 模型预测:最后,使用训练好的模型对输入的图片进行预测,以得到换装后的图片。可以使用图像生成、图像融合等技术进行预测。 四、AI 换脸换装的应用 AI 换脸换装技术可以应用于多个领域,如影视制作、虚拟现实、游戏等。在影视制作中,可以使用 AI 换脸换装技术来替换演员的面部特征和外貌,以实现特效和角色转换。在虚拟现实和游戏中,可以使用 AI 换脸换装技术来实现角色自定义和换装功能,以提高用户体验和自由度。 五、总结 AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。通过使用深度学习模型和图像处理技术,可以实现高质量的 AI 换脸换装效果。这项技术可以应用于多个领域,如影视制作、虚拟现实、游戏等,以提高用户体验和自由度。
2024-05-20
优质的ai换装工具
以下是一些优质的 AI 换装工具: 1. YouCam Makeup 这是一款移动应用程序,可以让你在照片中轻松更换衣服。只需上传照片,从应用程序的服装库中选择喜欢的服装即可。除了换装,还提供各种滤镜和编辑工具。 2. AI 抠图魔术师 这是一款强大的照片编辑软件,主要功能是可以为照片中的人物换装。运用先进的 AI 技术,能够精准识别照片中的人物,将选定的服装图案应用到人物身上。 3. FaceApp 这是一款非常受欢迎的照片编辑应用程序,可以让照片显得更年轻、更老,或者为照片更换服装。使用先进的 AI 技术,可以精准地修改照片,效果看起来非常自然。 4. PicsArt Photo Editor 这是一款知名的照片编辑软件,具有强大的"更换服装"功能。可以从各种服装风格中选择,无论是休闲、正式还是潮流,一键在照片上换上新衣服。 5. Canva AI Canva 推出的 AI 文本到图像生成工具,可以根据文字描述生成相应的图像。虽然不是专门的换装工具,但也可以尝试生成穿着特定服装的人物图像。 总的来说,这些 AI 换装工具都利用了先进的 AI 技术,能够精准地识别照片中的人物,并将各种服装图案应用到人物身上,达到逼真的换装效果。用户可以根据自己的需求选择合适的工具使用。
2024-04-26
如何实现ai人物换装
实现AI人物换装是一个复杂的项目,涉及到多个技术领域,包括计算机视觉、图像处理、机器学习以及深度学习等。以下是一个基本的步骤指南,用于实现AI人物换装: 1. 数据收集与预处理 收集大量包含不同人物和衣物的图片作为训练数据。 对图片进行预处理,如调整大小、裁剪、归一化等,以适应模型训练。 2. 特征提取与对象检测 使用深度学习方法,如YOLO、Faster RCNN等,进行人物和衣物的对象检测。 提取衣物的关键特征,如颜色、款式、材质等。 3. 风格迁移与图像合成 使用风格迁移技术,将新衣物的风格与人物图片中的原有衣物风格相匹配。 通过神经网络学习源图像和目标图像之间的风格差异,并将其应用于目标图像。 使用图像合成技术,将新衣物与人物图片中的相应部位合成。 4. 优化与调整 对合成后的图像进行优化和调整,以改善细节和消除不自然的部分。 可能需要对合成结果进行微调,以达到最佳效果。 5. 用户交互 设计用户友好的界面,允许用户选择或上传衣物图片,并实时预览换装效果。 提供调整功能,如大小、颜色、透明度等,以满足用户的个性化需求。 6. 遵守法律法规和伦理标准 确保AI换装技术的应用符合当地的法律法规。 关注伦理问题,如个人隐私保护,确保技术使用符合社会伦理标准。 实现AI人物换装需要跨学科的技术知识和团队合作。随着技术的不断进步,市场上也出现了许多平台和工具,可以帮助简化实现过程。
2024-04-17