Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI模特换装

Answer

以下是关于 AI 模特换装的相关信息:

  • 字节发布的新模型 SeedEdit 可对图片进行编辑,包括模特服装颜色的更换。例如输入“Change the blue Nike tracksuit to black Nike tracksuit”,SeedEdit 能迅速响应并完成换装。
  • 在达摩院中可以直接进行 AI 模特虚拟换装的测试,网址为:https://damo-vision.com/?spm=5176.29779342.d_app-market.6.62e929a4w3xGCR ,其支持虚拟换装和姿态编辑。
  • AI 模特换装的应用广泛,在电商平台上,很多衣服的效果图已由 AI 生成,AI 模特无需像真人一样辛苦换装和摆姿势。
Content generated by AI large model, please carefully verify (powered by aily)

References

真·打字P图!字节发布新模型SeedEdit,一句话爆改世界名画,可免费体验

每次编辑尽量使用单指令,为防止它「丢三落四」,多指令最好少于3种变化。虽然SeedEdit具备一定的推理能力,有时指令模糊它也能猜个大概,但为了效果更佳,在局部编辑时,下指令要精准,尤其是画面具有多个实体时,需描述清楚对谁做什么。参考图尽可能清晰、分辨率高,要想保留参考图中的对象,则可以多加一些对象描述。比如从简单的change to afro hairstyle变成change this young Chinese man hairstyle to afro style.如果感觉编辑效果不明显,可以调整编辑强度,比如从0.5调整到1.0;若发现编辑变化太多,同样也可以减少编辑强度,比如降到0.1。单挑Dall・E3、Midjourney没有对比就没有发言权。我们就让字节SeedEdit和AI生图界的「扛把子」Dall・E3、Midjourney来次真刀真枪的比拼。首先,我们给这三个模型输入同样的Prompt:a female model in blue Nike tracksuit,Fujifilm,urban street photography。让它们各自生成一张图片,再在此基础上进行局部调整。SeedEdit生成的图片既时尚又充满运动气息。模特身着印有醒目耐克Logo的运动背心,搭配同色系棉质夹克,裤子的光泽与夹克相得益彰,整体效果相当协调。随后,我们输入文字指令「Change the blue Nike tracksuit to black Nike tracksuit」,SeedEdit迅速响应,给模特换成了一身黑色,夹克和裤子的光泽感同样得到完美呈现。(Input Prompt:a female model in blue Nike tracksuit,Fujifilm,urban street photography;Edit Prompt:Change the blue Nike tracksuit to black Nike tracksuit.)

DAY1 - 必须了解的企业级AI应用开发知识点

看完模型能力之后,你会不会发现原来AI能在千行百业中能做的怎么能有这么多???接下来,我们进入到“应用广场”中,去看一些已经相对成熟的案例。下面简单讲几个例子:[heading5]2.2.1 AI模特(虚拟换装)[content]大家也可以直接在达摩院里面直接进行测试:https://damo-vision.com/?spm=5176.29779342.d_app-market.6.62e929a4w3xGCR支持虚拟换装、姿态编辑。[heading5]2.2.2电商零售推广文案写作[content]通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为您的营销活动和宣传文案提供灵感和文案写作支持。输出示例:[heading5]2.2.3泛企业VOC挖掘[content]泛企业VOC挖掘,是一个面向各类企业的VOC标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的VOC数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。输出示例:[heading5]2.2.4通义晓蜜[content]基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。输出效果:

一个希望有点意思的AI分享(一)

让我们具体来看下目前的AI具有哪些能力。AI的首要能力是根据问题和要求生成文本,之前视频中展示的聊天机器人便是基于文本生成技术,同时融入了语音与文字的转换功能。这一能力的应用范围极为广泛,涵盖了写文章、对话聊天、编程写代码、翻译、阅读理解、推理等等诸多领域,这些任务AI现在很多都能解决得不错。在之前的ChatGPT视频中你可能也发现了,AI除了能理解文字,AI也能看懂图像和视频。比如在上图的例子中,AI可以理解画面的内容,并清晰的描述出眼镜所在位置。除了真实世界的图像,对网页截图和文字数据的图片进行分析更是不在话下。甚至,它可以看懂抽象的表达,并且进行推理和作答。你一定联想到了之后的教育会迎来多大的变革。在上图左边的例子中,AI还能看懂专业的图像,例如医学。当然,这可能需要涉及专门的训练和处理。右边的例子则是说明了AI甚至能够理解人类的”笑点“,如果你认为幽默是一种智慧的体现,那么AI现在已经可以做到了,至少像是。除了看懂图像之外,AI也能产生图像。上面的四幅图都是AI生成的,图片下面是对应的指令,其实都是对图片内容和格式的要求。最左边是一幅写实的图像,很像照片了,第二幅是油画风格,第三幅是一个在现实中不可能出现的却又非常写实的图像,最后是写意的中国水墨画风格,AI也可以掌握。图像生成的应用非常的广泛,比如说AI可以帮助我们做设计,包括商品设计、商标设计、UI界面设计、家装设计等等,都可以AI生成。目前在电商平台上你看到的商品图片,特别是衣服的效果图,其实已经有非常多是AI生成了。AI模特不需要像人一样那么辛苦换衣服和摆Pose。

Others are asking
AI在国企的应用
AI 在国企的应用场景广泛,以下为您列举一些常见的应用领域: 1. 医疗保健方面: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务方面: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务方面: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业方面: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 此外,在国企中,AI 还可以应用于工作流程自动化、提高运营效率、优化资源配置等方面。随着技术的不断发展,未来有望看到更多创新的应用场景和解决方案。
2025-02-22
我是一个小学教师,我要写一个值周小结,推荐用哪款AI软件
以下是为您推荐的一些可能有助于写值周小结的 AI 软件: 1. 可画软件:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 2. Request 软件:具有锐化清晰度等 PS 中有的功能,可自定义尺寸、选择风格模型、创建风格,支持中文输入但部分提示词用谷歌翻译更准确,还具有文字输入、样机等功能。每天登录有 50 点积分,生成一次图像需 1 点积分,可创建系列图像。 3. 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 此外,还有一些辅助工具: 1. IAIFONT、自由等字体软件:可及时预览和切换字体,注意使用免费字体和避免版权问题。 2. 内容排版大师的 GPTs:只需在聊天框粘贴文字内容,然后点击发送即可。GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 3. 小作卡片 app:官网链接:https://kosaku.imxie.club/ 。操作步骤为:①打开软件点击「自制卡片」;②在「记录些什么...」中粘贴 AI 生成文本内容;③点击右下角的保存图标即可导出。
2025-02-22
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
工作10多年了,英语生疏了,如何利用AI学好英语应对国外出差、商务谈判
以下是利用 AI 学好英语以应对国外出差和商务谈判的一些建议: 1. 进行自然语言对话:让 AI 模拟真实的交流场景,与您进行英语对话,帮助您提高口语表达和听力理解能力。 2. 提供深入全面的解释:要求 AI 对您提出的问题和知识点提供深入的见解和全面的理解,可能的话还可以为您寻找并提供相关的网络图片来增强解释效果。 3. 构建复杂的句子:让 AI 巧妙地运用复杂的句子结构来模拟真实的人类对话,丰富语言的多样性和复杂性。 4. 创意和多样的语言运用:避免语言的重复,使用多样的短语和词汇,并适当加入幽默、讽刺等元素,展现个性化。 5. 基于事实和引用:让 AI 在回答中包含事实和著名的引语,增加回答的可信度。 6. 详细和个性化的回应:AI 的回答应包含具体而细致的内容,并根据您之前的交流历史进行个性化定制。 7. 模仿人类的不完美:偶尔让 AI 模仿人类的小拼写错误、语法错误和轻微的逻辑不一致。 8. 富有表现力和个性化的交流:让 AI 在交流中注入情感,使用随意的语言和各种语气词,展示其推理过程。 9. 多样的结构和语言格式:让 AI 采用多种句子结构和表达方式,使语言更丰富自然。 10. 分享个人故事和独特观点:让 AI 补充个人经历和独特的观点,使交流更丰富和个性化。
2025-02-22
我是一名教师,是一个AI小白,现在想系统学习相关内容,请帮我规划好
以下是为您规划的系统学习 AI 的方案: 第一阶段:迈出第一步,打好基础 1. 学习指南 系统性学习:避免碎片化输入,系统地阅读相关书籍、听取优质课程,了解 AI 的底层原理和发展历程。 2. 初步探索 避免弯路:不要仅依赖刷短视频学习,对于 B 站等平台上的内容要有选择性,注重质量高的系统性内容。 3. 加入 AI 社区 例如“通往 AGI 之路”开源知识库,参考新手指引入门。 第二阶段:深入学习 1. 了解 AI 基本概念 阅读「」,熟悉术语和基础概念,包括主要分支及相互联系。 浏览入门文章,了解历史、应用和发展趋势。 2. 开始学习之旅 参考「」,学习生成式 AI 等基础知识,推荐李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 第三阶段:选择感兴趣的模块深入 1. 领域选择 AI 领域广泛,如图像、音乐、视频等,根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 第四阶段:实践和尝试 1. 巩固知识 理论学习后通过实践巩固,尝试使用各种产品创作作品。 分享实践成果。 第五阶段:体验 AI 产品 1. 互动学习 尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解工作原理和交互方式,获取实际应用体验,激发对 AI 潜力的认识。
2025-02-22
PATHON+AI 如何应用到实际工作中,你这边有没有实际案例教学
以下是一个关于 Python + AI 在实际工作中的应用案例: 在自动驾驶车辆领域,对于 AI 系统的可解释性需求程度高度取决于具体情境,包括应用的安全关键程度。例如,设计自动驾驶车辆的技术专家需要理解系统的决策能力以进行测试、评估和改进;普通用户可能仅需了解决策过程以安全使用车辆;若车辆发生故障并导致有害结果,监管机构可能需要有关系统如何运作的信息以分配责任。尽管 AI 可解释性仍是技术挑战和活跃的研究领域,但监管机构已在开展相关工作以解决此问题。如 2021 年,ICO 和艾伦图灵研究所共同发布了关于用 AI 解释决策的指导,为组织提供了实用建议,以帮助向受其影响的个人解释由 AI 交付或协助的流程、服务和决策。
2025-02-22
ai模特换服装生成视频
以下是为您提供的关于 AI 模特换服装生成视频的相关信息: 阿里巴巴开发了 ViViD 视频虚拟试穿技术,可以替换视频中人物的衣服,生成真实自然的视频,支持多种服装类型,在视觉质量、时间一致性和细节保留方面表现优异。相关链接:https://x.com/imxiaohu/status/1796019244678906340 。 此外,目前在电商平台上已经有很多商品图片,特别是衣服的效果图是由 AI 生成的,AI 模特不需要像人一样辛苦换衣服和摆 Pose 。
2025-02-21
我想学习通过衣服图片生成模特视频
以下是关于通过衣服图片生成模特视频的相关内容: 如果您要通过衣服图片生成模特视频,有以下两种方法可供参考: 方法一:使用 Stable Diffusion 1. 真人穿衣服拍照,并拿到穿衣服的真实质感照片。如果身材方面有难处,可以借助美图秀秀或 PS 进行处理。 2. 选好底模,一定要是 realistic 的真人照片风格底模,例如 majicmixRealistic_v7。 3. 根据不同平台换头,比如面向海外市场换白女头,面向中老妇女换妈妈头。 4. 在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置好 prompts 和 parameters,例如 breathtaking cinematic photo, masterpiece, best quality, , blonde hair, silver necklace, carrying a white bag, standing, full body, detailed face, big eyes, detailed hands 等。 方法二:使用即梦的智能参考功能 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 模特图自由定制:智能参考可以让模特图的变装、换发型、换脸、换发色和调整人物姿势变得轻而易举。 产品图随心变化:可以改变产品材质,调整画面背景。 电商海报一键搞定:支持随意更改背景、元素,适应不同的营销主题。 希望以上内容对您有所帮助。
2025-02-04
请推荐一款,可以快速生成电商服装模特的ai工具
以下为您推荐几款可快速生成电商服装模特的 AI 工具: 1. Stable Diffusion:如果您要开淘宝网店,可借助它初步制作展示商品。比如卖绿色淑女裙,先真人穿衣服拍照,处理好照片,选好 realisitic 真人照片风格的底模,再根据不同平台换头,通过图生图下的局部重绘选项卡涂抹替换部分,并设置好 prompts&parameters。 2. ComfyUI:这个工作流适用于电商服饰行业的换装、虚拟试穿等场景。首先生成适合服装的模特,可抽卡抽到满意的模特,加入 Redux 模型,强度不用太高,让提示词生效。然后进行高精度的换装,先预处理拼出 mask,再重绘 mask 区域。 3. 达摩院:支持虚拟换装、姿态编辑,您可以直接在 https://damovision.com/?spm=5176.29779342.d_appmarket.6.62e929a4w3xGCR 进行测试。
2025-02-02
怎么用ai完成淘宝模特图片的批量修改,风格都是一致的
以下是使用 AI 完成淘宝模特图片批量修改且风格一致的方法: 1. 利用 Stable Diffusion 进行局部重绘: 真人穿衣服拍照,获取真实质感的照片。若身材方面有问题,可借助美图秀秀或 PS 处理。 选好真人照片风格的底模,如 majicmixRealistic_v7。 根据不同平台需求换头,如面向海外市场换白女头。 在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置好 prompts 和 parameters。 2. 大淘宝设计部的实践: 对于定制化真人模特实景素材的主题活动,通过 AI 可将策划、搭建、拍摄、设计融为一个闭环流程,短时间内完成页面所有素材的生产和输出。 在 UI 设计场景中,采用 AI 能力可快速定制多种视觉效果,通过 SD 中 controlnet 的有效控制,生成指定范围内的 ICON、界面皮肤等内容。 通过对 AI 大模型的训练和应用,算法从模特姿态、背景风格、装饰元素等多个维度进行效果升级,结合用户数据提供定制化的线上真人化模特体验。 一张商品图,结合用户的自定义输入,可生成多张场景效果,无需 3D 模型、显卡渲染和线下拍摄。 此外,字节发布的新模型 SeedEdit 也可用于图片编辑,每次编辑尽量使用单指令,多指令最好少于 3 种变化。为保证效果,局部编辑时下指令要精准,参考图要清晰、分辨率高。若编辑效果不明显或变化过多,可调整编辑强度。
2025-01-21
控制模特的姿势
以下是关于控制模特姿势的方法: 在使用相关 AI 工具时,如 Stable Diffusion 等,有以下几种控制模特姿势的方式: 1. 使用蒙版和提示词:输入相关提示词,如“蓝色毛衣”,处理蒙版区域内容为“填充”,调整尺寸与图像一致,重绘幅度为 1。但可能会出现衔接问题,此时可降低重绘幅度或添加 openpose 来控制人物身体,获得正确姿势。 2. 利用 ControlNet 功能: 正常填写大模型和关键词生成照片。 鼠标滑到最下面,点击“ControlNet”。 点击空白处上传指定姿势的照片,并点击“启用”。 在“预处理器”和“模型”里选择“openpose”,用于让计算机识别人物姿势。 点击“预览预处理结果”,最后点击生成照片,即可得到指定姿势的照片。 在 ControlNet 参数配置方面: tile 用于对整体画面的控制,可选择分块+固定颜色+锐化,以保证颜色统一降低后续闪烁,不需要全过程引导,仅在开始时固定画面。 lineart 用于提取人物线条,保证人物整体不跑偏,权重给到 0.6 以控制整体画面输出稳定。 openpose 用于控制人物的姿态、表情和动作,推荐使用 DWpose 处理器,其对面部和手部的识别效果较好。
2025-01-17
我想要根据一个模特去生成她多个角度的图片
以下是根据您的需求生成模特多个角度图片的方法: 1. 准备工作: 准备一张人物的多角度图片,该图共有 15 个不同视图,尺寸设置为 1328×800px,放大两倍后可保证每张小图为 512×512px。 加上网格图,通过 lineart 分割不同块面。 设置 controlnet,第一张图选择 openpose_face 得到人物 15 个面部角度,第二张图选择 lineart_standard得到清晰的表格分区。 为防止小图模式下人脸崩坏,可增加 ADetailer 的脸部修复插件。 2. 开始生图: 设置文生图提示词: 大模型:majicmixRealistic_v6.safetensors 正向提示词:,auburn hair,eyes open,cinematic lighting,Hyperrealism,depth of field,photography,ultra highres,photorealistic,8k,hyperrealism,studio lighting,photography 负向提示词:EasyNegative,canvasframe,canvas frame,eyes shut,wink,blurry,hands,closed eyes,,lowres,sig,signature,watermark,username,bad,immature,cartoon,anime,3d,painting,b&w 设置参数: 迭代步数:50 采样方法:DPM++2M Karras 尺寸:1328×800px 出图,可得到 15 个不同角度的人物图片。
2025-01-08
换装
以下是关于 AI 换装的相关知识: 【SD】商业换装如此简单,Segment Anything 保姆级教学 如果在使用过程中发生错误,可能需要部署使用环境,傻瓜安装教学模式如下: 1. 安装 cuda_11.8.0_522.06_windows.exe。 2. 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。若安装过 roop 可跳过此步骤。 3. 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 4. 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 5. 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 6. 重启,装好了,重启电脑,即可运行。 此软件最大的作用是帮助快速高效生成蒙版,从而进行人物的换装或者图片中元素的替换。若想获取插件安装包,可添加公众号【白马与少年】,回复【SD】。 ComfyUI 换装服饰一致性 此工作流可用于电商服饰行业、换装、虚拟试穿等场景,在提升效果的同时简化了工作流,没有繁琐的依赖和环境,更多使用了原生的节点。 工作流的整体思路是: 首先,生成适合服装的模特。很多时候换装效果不好、有违和感是因为服装和人物不匹配,所以要先抽卡抽到满意的模特,可加入 Redux 模型,强度不用太高,让提示词生效。 第二步,开始进行高精度的换装。先进行预处理的工作,拼出来 mask,然后重绘 mask 区域。 高精度换装前的准备: 1. 将模特身上的衣服分割出来。 2. 拼接出来对应模特与衣服合并后图片的遮罩。 使用的是 Flux 的 fill 模型,提示词书写的格式为:这是一组图片,左边是衣服,右边的模特穿着左边的衣服。Redux 这里,把权重的调整为最大。 【SD】商业换装如此简单,Segment Anything 中 GroundingDINO 模型分割 有时需要更精确的蒙版,如人物的眼睛或身上的配饰等,单靠 SAM 模型很难得到想要的蒙版,此时需要使用 GroundingDINO。 启用 GroundingDINO,AI 会自动下载模型,若无法下载可去云盘直接下载,放到特定文件目录下。在检测提示词中输入“eye”,AI 可根据语义分割自动检测出眼睛部分,并设置好蒙版。还可通过预览箱体得到眼睛编号,选择调整单一眼睛。 例如,只想调整左边眼睛,勾选 1 即可。选择想要修改的蒙版,上传到重绘蒙版当中,添加提示词“闭眼”并生成。还可给人物换背景,加载生成的背景蒙版,大模型选择 revAnimated_v122,正向提示词:简单背景、花、国画、工笔。蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可放入图生图中使用 tile 模型做整体细化,还能给人物衣服添加国风元素。最后可到 PS 使用创成式填充修复头发。
2025-01-14
换装
以下是关于 AI 换装的相关知识: 【SD】商业换装如此简单,Segment Anything 保姆级教学 如果在使用过程中发生错误,可能需要部署使用环境,傻瓜安装教学模式如下: 1. 安装 cuda_11.8.0_522.06_windows.exe。 2. 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。若安装过 roop 可跳过此步骤。 3. 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 4. 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 5. 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 6. 重启,装好了,重启电脑,即可运行。 这个软件最大的作用,就是帮助我们快速高效地生成蒙版,从而进行人物的换装或者图片中元素的替换。若想获取插件安装包,可以添加公众号【白马与少年】,回复【SD】。 ComfyUI 换装服饰一致性 此工作流可用于电商服饰行业、换装、虚拟试穿等场景,在提升效果的同时简化了工作流,没有繁琐的依赖和环境,更多使用了原生的节点。 工作流的整体思路是: 首先,生成适合服装的模特。很多时候换装效果不好、有违和感是因为服装和人物不匹配,所以要先抽卡抽到满意的模特,再进入第二步。 第二步,开始进行高精度的换装。先进行预处理的工作,拼出来 mask,然后重绘 mask 区域。 模特生成:先生成与衣服匹配的模特,这里可以先不关注衣服的相似度,先抽出满意的模特。加入 Redux 模型,强度不用太高,让提示词生效,Reduxprompt 节点风格细节等级(1=27×27 最强,14=1×1 最弱)。 服装高精度处理: mask 的处理:高精度换装前要做两个工作,一是将模特身上的衣服分割出来,二是拼接出来对应模特与衣服合并后图片的遮罩。 提示词格式与 Redux 权重:使用 Flux 的 fill 模型,提示词书写格式为这是一组图片,左边是衣服,右边的模特穿着左边的衣服。Redux 这里把权重调整为最大,就可以对 mask 位置的服装进行进一步处理,还原原来的服装细节并得到需要的模特。 【SD】商业换装如此简单,Segment Anything 中 GroundingDINO 模型分割 有时需要更精确的蒙版,如人物的眼睛或身上的配饰等,单靠 SAM 模型难以得到想要的蒙版,此时需要使用 GroundingDINO。启用 GroundingDINO,AI 会自动下载模型,若没有魔法可去云盘直接下载,放到特定文件目录下。在检测提示词中输入“eye”,AI 可根据语义分割自动检测出眼睛部分并设置好蒙版,还可通过预览箱体得到眼睛编号,选择调整单一眼睛。选择想要修改的蒙版,上传到重绘蒙版中,添加提示词生成图片。还可给人物换背景,加载生成的背景蒙版,选择大模型和正向提示词,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可放入图生图中细化,再用 PS 创成式填充修复头发。
2025-01-10
ai换装,目前主流工具有哪些
目前主流的 AI 换装工具包括:InterAlia(https://interalia.vcflab.org/)。需要注意的是,虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。
2025-01-02
如何使用stable diffusion 生成模特换装的工作流
Stable Diffusion 是一种强大的生成模型,常用于图像生成和修改任务。利用 Stable Diffusion 实现模特换装可以通过以下步骤和工作流程进行: 工作流程 1. 准备环境 确保你有合适的硬件配置,特别是具有高性能 GPU 的计算机。 安装必要的软件和依赖项,如 Python、CUDA、PyTorch 等。 2. 获取模型 下载并安装 Stable Diffusion 模型。 可以从 Hugging Face 的模型库中找到合适的预训练模型,也可以使用自己的数据进行微调。 3. 数据准备 模特图像:准备高质量的模特图像,确保背景简单以便后续处理。 服装图像:收集或创建各种服装的图像,最好是带有透明背景的 PNG 格式。 4. 图像预处理 使用图像编辑工具(如 Photoshop 或 GIMP)将模特图像和服装图像裁剪成合适的大小和比例。 如果需要,可以使用 OpenCV 或 PIL 进行自动化预处理。 5. 定义输入格式 将模特图像和服装图像输入 Stable Diffusion 模型的方式需要提前定义。 典型输入包括模特的基本特征(如位置、姿态)和服装的特征(如颜色、纹理)。 6. 生成换装图像 使用 Stable Diffusion 模型,输入模特图像和服装图像,生成换装后的模特图像。 可以调整生成参数(如扩散步数、采样方法)以获得最佳结果。 7. 后处理 对生成的图像进行后处理,如调整亮度、对比度,或者进一步修正细节。 使用图像编辑工具或自动化脚本完成后处理步骤。 8. 评估和优化 评估生成图像的质量,根据需要进行微调或更改模型参数。 可以使用人工评估或引入评价指标(如 FID、IS 分数)进行量化评估。 示例代码 以下是一个简化的 Python 示例代码,展示如何使用 Stable Diffusion 模型进行图像生成: ```python import torch from transformers import StableDiffusionPipeline 加载模型 model_id = "CompVis/stablediffusionv14" pipe = StableDiffusionPipeline.from_pretrained 准备输入 prompt = "A model wearing a red dress standing on a white background" 生成图像 image = pipe.images 保存图像 image.save ``` 工具和资源 1. Hugging Face: 提供预训练的 Stable Diffusion 模型和相关文档。 链接: 2. OpenCV 和 PIL: 用于图像预处理和后处理。 安装:`pip install opencvpython pillow` 3. 图像编辑工具: 如 Photoshop 或 GIMP,用于手动处理图像。 提示 硬件要求:高性能的 GPU 可以显著加快图像生成速度。 数据质量:高质量的输入图像和精细的预处理可以提高生成图像的效果。 参数调整:根据生成结果不断调整模型参数以获得最佳效果。 模型微调:如果预训练模型不能完全满足需求,可以考虑使用自己的数据集进行微调。 通过这些步骤和工具,您可以使用 Stable Diffusion 模型生成模特换装的图像,创建高质量的视觉效果。
2024-05-26
AI 换脸换装
AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。以下是一篇关于 AI 换脸换装的文章: AI 换脸换装的方法和应用 一、整体流程介绍 数字人视频的整体制作流程,大致分为三步: 1. 创建视频内容:通过输入文稿内容,确定数字人播出的内容。 2. 生成数字人:通过工具,以及视频内容生产数字人形象及播放语音。 3. AI 换脸:通过 AI 工具,将数字人的脸,转换成你指定宣传的形象,以便以自己的品牌形式宣传。 二、AI 换脸的方法 打开 FaceFusion 软件,需要返回实例列表,点击自定义服务按钮,会打开一个新的浏览器窗口。这样,我们才能够通过 web 浏览器来访问 FaceFusion 提供的 UI 界面。在 FaceFusion 软件界面上(见上图),上传准备好的图片,视频后,在右侧可以看到预览效果。点击下方的开始按钮,执行换脸处理。执行完成后,在输出的位置,会出现处理后的视频,输出窗口的右上角有一个下载按钮,点击它你可以导出变量后的视频到本地。 三、AI 换装的方法 要实现 AI 换装,需要使用到一些图像处理和计算机视觉技术。具体来说,可以通过以下步骤实现: 1. 数据准备:首先需要准备一些包含不同服装的图片数据,这些图片可以从互联网上下载,也可以通过拍摄得到。 2. 模型训练:接下来需要使用深度学习模型对这些图片进行训练,以学习不同服装的特征和样式。可以使用卷积神经网络(CNN)或循环神经网络(RNN)等模型进行训练。 3. 图像处理:在得到训练好的模型后,需要对输入的图片进行处理,以便模型能够识别和理解图片中的服装信息。可以使用图像分割、特征提取等技术进行处理。 4. 模型预测:最后,使用训练好的模型对输入的图片进行预测,以得到换装后的图片。可以使用图像生成、图像融合等技术进行预测。 四、AI 换脸换装的应用 AI 换脸换装技术可以应用于多个领域,如影视制作、虚拟现实、游戏等。在影视制作中,可以使用 AI 换脸换装技术来替换演员的面部特征和外貌,以实现特效和角色转换。在虚拟现实和游戏中,可以使用 AI 换脸换装技术来实现角色自定义和换装功能,以提高用户体验和自由度。 五、总结 AI 换脸换装是一种基于人工智能技术的应用,它可以将一个人的面部特征和外貌替换为另一个人的面部特征和外貌。通过使用深度学习模型和图像处理技术,可以实现高质量的 AI 换脸换装效果。这项技术可以应用于多个领域,如影视制作、虚拟现实、游戏等,以提高用户体验和自由度。
2024-05-20
优质的ai换装工具
以下是一些优质的 AI 换装工具: 1. YouCam Makeup 这是一款移动应用程序,可以让你在照片中轻松更换衣服。只需上传照片,从应用程序的服装库中选择喜欢的服装即可。除了换装,还提供各种滤镜和编辑工具。 2. AI 抠图魔术师 这是一款强大的照片编辑软件,主要功能是可以为照片中的人物换装。运用先进的 AI 技术,能够精准识别照片中的人物,将选定的服装图案应用到人物身上。 3. FaceApp 这是一款非常受欢迎的照片编辑应用程序,可以让照片显得更年轻、更老,或者为照片更换服装。使用先进的 AI 技术,可以精准地修改照片,效果看起来非常自然。 4. PicsArt Photo Editor 这是一款知名的照片编辑软件,具有强大的"更换服装"功能。可以从各种服装风格中选择,无论是休闲、正式还是潮流,一键在照片上换上新衣服。 5. Canva AI Canva 推出的 AI 文本到图像生成工具,可以根据文字描述生成相应的图像。虽然不是专门的换装工具,但也可以尝试生成穿着特定服装的人物图像。 总的来说,这些 AI 换装工具都利用了先进的 AI 技术,能够精准地识别照片中的人物,并将各种服装图案应用到人物身上,达到逼真的换装效果。用户可以根据自己的需求选择合适的工具使用。
2024-04-26