Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Stable Diffusion 教程

Answer

以下是关于 Stable Diffusion 的教程:

Stable Diffusion 是什么: 稳定扩散(Stable Diffusion)是一个 AI 自动生成图片的软件,通过输入文字就能生成对应的图片。

入门教程

  • 新人视频教程:https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe
  • 文字教程:https://zhuanlan.zhihu.com/p/622238031

模型网站

  • C 站-SD 模型网站:https://civitai.com/
  • Liblibai-模型+在线 SD:https://www.liblib.ai/
  • huggingface:https://huggingface.co/models?pipeline_tag=text-to-image&sort=trending
  • 吐司站:https://tusiart.com/

推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ

为什么要学 Stable Diffusion 及其强大之处

  • 学习 Stable Diffusion 非常简单,目的是花更少时间快速入门。
  • 它可以生成真人 AI 美女、头像、壁纸,辅助绘画,还能用于恢复画质、室内设计等,有很多功能和应用场景。

希望以上内容对您有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

Stable Diffusion教程

[基本介绍](https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e)[稳定扩散(Stable Diffusion)是如何运作的](https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc)[heading3]入门看这里:[content][Stable Diffusion新人视频教程](https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe)文字教程:[Stable Diffusion超详细教程!从0-1入门到进阶](https://zhuanlan.zhihu.com/p/622238031)[heading2]模型网站:[content]|多行文本|标签|备注|附件|网址||-|-|-|-|-||C站-SD模型网站|模型|||[https://civitai.com/](https://civitai.com/)||Liblibai-模型+在线SD|模型|||[https://www.liblib.ai/](https://www.liblib.ai/)||huggingface||||[https://huggingface.co/models?pipeline_tag=text-to-image&sort=trending](https://huggingface.co/models?pipeline_tag=text-to-image&sort=trending)||吐司站|模型|||[https://tusiart.com/](https://tusiart.com/)|[heading2]推荐模型:[content]模型太多,以下是B站up主和设计师精选底膜,加上了标签,可以根据自己需求选择下载人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ

教程:超详细的Stable Diffusion教程

简单来说,Stable Diffusion(简称SD)就是一个AI自动生成图片的软件通过我们输入文字,SD就能生成对应的一张图片,不再需要像以前一样要把图片“画”出来,或者是“拍”出有的人说,我学习一个软件之前是不是要先知道它的原理呢?我的回答是:不需要!下面这张图就是我在网上保存的SD的原理图看得懂吗?看不懂,我也看不懂影响使用吗?完全不影响!很多人想学习stable diffusion,上网一搜,大多数教程都先告诉你SD的原理是什么但偏偏就是这一步就劝退了很多人继续学习因为这看起来真的好像很复杂很难但事实是:大多数的我们只是要能够熟练使用SD而不是要深入研究它我们还有自己的学习和工作因此,我们的目的就是花更少的时间快速入门Stable Diffusion当然了,如果你的时间比较充裕,去把SD的原理也了解了也是可以的跟大家说这些是想告诉大家学习SD真的非常简单!!这篇文章就会带大家通过一个个案例,实际上手操作生成各种照片我相信在你看完这篇文章并且自己去尝试过之后你就已经可以快速上手stable diffusion了!!接下来我们就正式开始去使用stable diffusion!!

教程:超详细的Stable Diffusion教程

我相信大家在刷视频的时候,或多或少都已经看到过很多AI绘画生成的作品了那SD到底可以用来干什么呢?01.真人AI美女我们最常看到的就是这些真人AI美女的账号02.生成头像、壁纸以前很多人花钱去找别人定制自己独一无二的头像或者壁纸现在SD就可以用来定制个人的二次元头像、盲盒模型或定制壁纸03.绘画辅助动漫图画、插画等都可以用SD来辅助完成比如线稿上色、或者是获取图画的线稿等Stable diffusion还有很多功能,比如恢复画质、室内设计等关于Stable Diffusion的实际变现方式和变现案例,之后我也会单独写文章来说噢!

Others are asking
Stable Diffusion 模型在哪
Stable Diffusion 模型可以从以下几个地方获取和存放: 1. 部分常用的大模型可以在分享的链接中获取,大家可以根据文件夹名称找到需要的模型。 2. 大多数模型可以在 Civitai(C 站)这个网站(https://civitai.com/)下载。下载方法如下: 科学上网(自行解决)。 点击右上角的筛选按钮,在框框里面找到自己需要的模型类型,如 Checkpoint=大模型、LoRA=Lora 等。 看照片,看到感兴趣的点进去,点击右边的“Download”保存到电脑本地。 3. 模型存放位置: 大模型:SD 根目录,即下载存放 SD 的那个文件夹。 Lora: VAE: 4. 如果不知道下载的模型是哪个类型,不知道要放到哪个文件夹,可以使用秋叶的模型解析工具(https://spell.novelai.dev/),把模型拖动到空白处,会自动弹出模型的信息。 另外,ComfyUI 存放路径:models/checkpoints/ 。
2025-03-04
本地部署stable-diffusion
以下是关于本地部署 Stable Diffusion 的详细步骤: 1. 准备工作: 电脑配置需能支持 SD 运行。 2. 下载整合包: 可以选择 B 站秋叶分享的整合包,链接:https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru 。 3. 安装整合包: 打开链接,下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 选择解压到 D 盘或者 E 盘,避免 C 盘被占满,点击确定。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 4. 启动和配置: 双击启动器,等待更新,接着点击左边第二个“高级选项”。 在显存优化里,根据自己电脑的显存选择(即查看的专用 GPU 内存)。 回到第一个一键启动,点击右下角的一键启动。 若出现报错,可回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。 5. 注意事项: 并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。 xFormers 能极大地改善内存消耗和速度,建议开启。 Stable Diffusion webui 的更新比较频繁,可根据需求在“版本管理”目录下更新。 同样地,也请注意插件的更新。在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。
2025-03-02
关于Stable Diffusion,个人本地附属,对机器的配置要求
Stable Diffusion 本地化部署对机器配置有一定要求: 1. 电脑系统:需为 Win10 或者 Win11,避免使用更低版本的系统。查看电脑系统的方法为在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 2. 电脑性能: 运行内存:8GB 以上。查看方法为鼠标右击桌面底部任务栏,点击“任务管理器”,在“性能”里面找到“内存”,只要看图中划线的参数即可。8GB 勉强达到标准,16GB 可正常使用,32GB 能非常自由地使用。 显卡:需为英伟达(俗称 N 卡)的显卡,显卡内存 4GB 以上。查看方法为在任务管理器中先看右上角显卡的名字或型号,确认是 NVIDIA 后,再查看显存,4GB 显存可运行 SD,推荐 8GB 以上显存。 如果电脑配置不够,可选择云端部署(Mac 也推荐云端部署),或者先试试简单的无界 AI。
2025-02-27
stable diffusion学习
以下是关于 Stable Diffusion 学习的相关内容: 一、为什么要学 Stable Diffusion 以及它的强大之处 简单来说,Stable Diffusion 是一个 AI 自动生成图片的软件。通过输入文字就能生成对应的图片,无需像以前那样画图或拍照。学习它非常简单,目的是花更少时间快速入门。如果时间充裕,了解其原理也可以。 二、学习 SD 的 Web UI 步骤 1. 安装必要的软件环境 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 三、Stable Diffusion 的原理及相关组件 1. 在传统扩散模型中存在计算效率挑战,Stable Diffusion 是为解决此问题提出的新方法,最初称为潜在扩散模型。 2. Stable Diffusion 是扩散模型的变体,核心组件包括: CLIP:将用户输入的 Prompt 文本转化成 text embedding。 VAE EncoderDecoder。 UNET:进行迭代降噪,在文本引导下进行多轮预测。 此外,还涉及 ComfyUI 存放路径、不同的模型(如 SD1.5、SDXL)、训练方法(如 DreamBooth)、模型格式(如.pt 和.safetensor)、微调模型、融合模型等内容。
2025-02-16
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16
stable diffusion
稳定扩散(Stable Diffusion)是一种扩散模型的变体,最初称为潜在扩散模型(Latent Diffusion Models)。 在传统扩散模型中,反向扩散过程通过 UNet 结构将全尺寸图像逐步传递以获得去噪结果,但存在计算效率挑战。为解决此问题,研究人员提出了稳定扩散。 其核心组件包括: 1. CLIP:将用户输入的 Prompt 文本转化成 text embedding。 2. VAE EncoderDecoder。 3. UNET:进行迭代降噪,在文本引导下进行多轮预测。 稳定扩散的运作方式是消除图像中的噪点。比如在太暗情况下拍照产生的颗粒状即噪点,它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界和书面语言来指导噪点消除过程。 稳定扩散是逐步去除噪点的,有“推理步骤”滑块。 ComfyUI 使用预训练的扩散模型(如 Stable Diffusion 模型)作为核心,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等模型。当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示以捕捉语义信息。 在 ComfyUI 的节点化界面中,每一步操作可通过不同模块实现,用户可控制潜在空间中的操作(如调度器和噪声选择)、UNet 中的推理步骤(通过去噪模块实现)以及条件输入(通过文本提示或图像引导)。 稳定扩散的相关模型有 SD1.5、SDXL 等,训练方法有 DreamBooth 等。模型格式有.pt 和.safetensor,还有融合模型等形式。训练要求方面,SD1.5 需 12G VARM,SDXL 需 16G VARM。
2025-02-14
stable difussion 可以生成视频吗
Stable Diffusion 中的 Stable Video Diffusion 可以生成视频。 Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,它是一种用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。该模型不仅支持文本、图像生成视频,还支持多视角渲染和帧插入提升视频帧率。用户可以调整模型选择、视频尺寸、帧率及镜头移动距离等参数。 当时,Stable Video Diffusion 开源了两种图生视频的模型,一种是能够生成 14 帧的 SVD,另一种则是可以生成 25 帧的 SVDXL。在以基础形式发布时,通过外部评估,发现这些模型超越了人类偏好研究中领先的封闭模型。 其主要贡献包括:提出一个系统的数据管理工作流程,将大量未经管理的视频集合转变为用于生成视频建模的高质量数据集;使用此工作流程,训练最先进的文本到视频和图像到视频模型,其性能优于所有现有模型;通过进行特定领域的实验来探索 SVD 模型中运动和 3D 理解的强先验。具体来说,预训练的视频扩散模型可以转变为强大的多视图生成器,这可能有助于克服 3D 领域中的数据稀缺问题。 Stability AI 还推出了基于 Discord 的媒体生成和编辑工具,其中的视频功能基于初始图像使用 Stable Video Diffusion 生成短视频。 在云部署实战方面,关于上面的两个模型依赖权重可在百度网盘获取,关注公众号「魔方 AI 空间」,回复【SVD】即可。手动下载下来后,分别放到指定路径。在准备工作做好后,再次运行,复制 url 到浏览器中打开。点击下拉箭头,可以选择不同模型版本,再勾选 load Model。SVD 本地部署目前仅支持图生视频,图片来源可以选择 AI 绘画工具如 Midjourney、Stable Diffusion 等生成图片,然后再上传到 SVD 进行视频的生成,同时可以调左侧的一些参数,控制视频的生成效果。视频生成的保存路径在 outputs 下。 但需要注意的是,SVD 模型对硬件要求较高,对于缺乏硬件资源的普通用户有一定限制,同时其支持的图片尺寸较小,限制了它的应用场景。尽管 SVD 与其他商用产品在帧率、分辨率、内容控制、风格选择和视频生成时长等方面存在差距,但其开源属性和对大规模数据的有效利用构成了其独特优势。
2025-02-25
stable difussion controlnet
Stable Diffusion 相关信息: Stable Diffusion 3.5 已发布,我们对安全高度重视并采取措施防止不良行为者滥用。10 月 29 日将公开发布 Stable Diffusion 3.5 Medium,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 ControlNet 允许通过线稿、动作识别、深度信息等对生成的图像进行控制。使用前需确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步。基本流程包括点击 Enable 启用该项 ControlNet,选择合适的 Preprocessor、调整 Weight 和 Guidance strength 等,还有一些特殊设置如 Invert Input Color、RGB to BGR、Low VRAM、Guess Mode 等。 用 Stable Diffusion 装饰二维码的方法:首先使用 img2img 生成类似于 QR 码的图像,在采样步骤中打开 ControlNet 以将 QR 码压印到图像上,在采样步骤接近尾声时关闭 ControlNet 以提高图像的一致性。具体步骤包括选择检查点模型、输入提示和否定提示、上传二维码到 img2img 画布、设置图像到图像的相关参数、将二维码上传到 ControlNet 的图像画布并设置 ControlNet 的相关参数,最后按生成并用手机查看二维码。
2025-02-25
ai教程
以下为为您提供的 AI 教程相关内容: 1. 五步学会用 AI 制作动画视频播客:五个步骤教您从零到一制作动画版视频播客,适合有一定技术基础的朋友,轻松上手创作动画视频!相关链接: 2. Poe AI 平台:这是一个支持与多个智能 AI 机器人(如 GPT4 等)进行实时在线交流的聊天网站。注册账号后可免费使用,部分功能需付费订阅。不同 AI 机器人有不同特点,可按需选择。官网地址是:https://poe.com/ ,可在官网帮助中心找到具体教程。 此外,还有以下 AI 相关信息: 1. Hailuo AI 推出 I2V01Live 新功能:能让静态 2D 插画“活”起来,从静态到动态为 2D 插画加入流畅动画,赋予角色生命力,支持多风格,动作细节表现细腻自然。相关链接: 2. 腾讯 Hunyuan:130 亿参数开源视频模型,能高质量生成视频,动作连贯自然,镜头切换灵活,具备强大语义跟随能力,适配新一代语言模型作为文本编码器,采用类似 Sora 的 DiT 架构,显著提升影视级动态表现力。相关链接:
2025-03-04
sd 教程
以下是关于 SD 的一些教程: 教程:SD 做二维码 好看的二维码欣赏:第一个就是 qrbtf。 方法原文地址:https://stablediffusionart.com/qrcode/ 引言:模型生成的。 教程:SD 做中文文字 持续更新中 制作思路: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 5. 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:29 60。 SD 的各种实践教程 教程:线稿上色 Midjourney + Stable Diffusion 教程:猫咪狗狗 lora 教程:字体设计机甲战士 教程:做盲盒 平面变 3D 教程:MJ 出图 SD 放大 教程:七夕字体和图 教程:可爱毛粘字体
2025-03-04
sd 教程
以下是关于 SD 的一些教程: 1. 用 SD 做二维码: 方法原文地址:https://stablediffusionart.com/qrcode/ 好看的二维码欣赏:第一个就是 qrbtf 最近新出了融合二维码教程 按照以下方法试验出了几个 waytoAGI.com 的二维码 微信的二维码需要转一下 https://cli.im/weixin 最近的一篇帖子展示了一系列使用 Stable Diffusion 创建的艺术二维码。这些二维码是使用模型生成的。 2. 用 SD 做中文文字(持续更新中): 制作思路: 将中文字做成白底黑字,存成图片样式 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering 如果希望有景深效果,也可以打开 depth(增加阴影和质感) 打开高清修复,分辨率联系 1024 以上,步数:2960 3. SD 的其他实践教程: 线稿上色 Midjourney+Stable Diffusion:https://waytoagi.feishu.cn/wiki/AsbYwmfS6ikhr3kNsCocdPMEnUd 猫咪狗狗 lora:https://waytoagi.feishu.cn/wiki/JiQewVbOHi7tzakS23ecprxsnfg 字体设计机甲战士:https://waytoagi.feishu.cn/wiki/GUQ3w52elisr9ukIgkBc42UmnWd 做盲盒平面变 3D:https://waytoagi.feishu.cn/wiki/SCK8wV4PTiHQVKkvGRUcx0fcnTe MJ 出图 SD 放大:https://waytoagi.feishu.cn/wiki/E88nwOtk9ilRQskg3Qlc6ZHpnTf 七夕字体和图:https://waytoagi.feishu.cn/wiki/BjQ1wLRv0ivCLtk136VchSCqnpU 可爱毛粘字体:https://waytoagi.feishu.cn/wiki/NjhbwF1cTiQ5Xjkd3tNc1OWynZd
2025-03-04
flux 训练lora 教程
以下是关于 Flux 训练 Lora 的教程: 1. 准备模型:需要下载以下几个模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。注意:不使用的话它们放到哪里都可以,甚至放一起一个文件夹,只要知道“路径”,后面要引用到“路径”。因为是训练,不是跑图,训练的话,模型就用 flux1dev.safetensors 这个版本,编码器也用 t5xxl_fp16.safetensors 这个版本最好。 2. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 3. 安装虚拟环境:下载完解压,在文件中找到 installcnqinglong.ps1 这个文件,右键选择“使用 PowerShell 运行”,新手的话这里就点击“Y”,然后等待 1 2 小时的漫长下载过程,下好了之后最后会提示是否下载 hunyuan 模型,选择 n 不用下载。 4. 0 基础训练大模型: 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 步骤一·创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。zip 文件可以是包含图片 + 标签 txt,也可以只有图片没有打标文件(之后可以在 c 站使用它的自动打标功能),也可以一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后就会上传成功,可以点击详情检查,可以预览到数据集的图片以及对应的标签。 步骤二·Lora 训练:点击 Flux,基础模型会默认是 FLUX 1.0D 版本,选择数据集,点击右侧箭头,会跳出所有上传过的数据集,触发词可有可无,取决于数据集是否有触发词,模型效果预览提示词则随机抽取一个数据集中的标签填入即可。训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数,如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数,可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力,然后就可以等待训练了,会显示预览时间和进度条,训练完成的会显示出每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 5. ControlNet 作者张吕敏再出新项目 LuminaBrush:基于数据集在 Flux 上训练 LoRA,并用 LoRA 生成的图像来扩展这个图像数据集。使用均匀光照图像作为中间表示具有一些优势,比如避免来自 3D 反照率的过于锐利的网格边界或过于平坦的表面。而这些图像在细节层面也足够细腻,可以处理皮肤纹理、头发、毛发等细节。接下来,通过合成随机法线,将这些均匀光照图像进行随机再光照,以训练一个可以从任何输入图像中提取均匀光照外观的模型。第一阶段的这个模型目前也提供了在线 demo:https://huggingface.co/spaces/lllyasviel/lumina_brush_uniform_lit 。第二阶段,会从数百万张高质量的自然场景图像中提取均匀光照外观图像,以构建成对数据集,用于训练最终的交互式光照绘制模型。
2025-03-04
这个网站有学习AI绘画的教程吗
以下是一些学习 AI 绘画的教程资源: 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 从 0 入门 AI 绘画教程: 线上教程: AI 线上绘画教程:
2025-03-04
cursor教程
以下是关于 Cursor 教程的相关内容: 中文教程网站:,适合想深入了解和学习 Cursor 使用方法的用户。 4 款插件 2 个 API 配置教程:从穷👻套餐 2.0 开始,对 Cursor 的配置集中在接入更多模型,如 Qwen2.5Coder、Llama3.3、deepseek v3、gemini2.0flash 等,以节省 API 费用,但未完全挖掘出 Cursor 潜力,Pro 版本有次数限制,因此收集 3 个插件、2 大 API 和 N 个新的提示语用法,为 Cursor 装配上多种功能。 0 编程基础入门极简使用指南: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,接受二维码登录。 安装中文包插件。 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求,如“帮我做一个贪吃蛇游戏,在网页中玩”,并清晰表达需求,包括游戏界面、蛇的移动、食物、增长、死亡条件、得分、难度递增和游戏结束等规则。
2025-03-04