Stable Diffusion 模型可以从以下几个地方获取和存放:
另外,ComfyUI 存放路径:models/checkpoints/ 。
用stable diffusion可以把自己想象成一个画家在起笔画画之前,我们要先确定我们画的是什么风格的画,是二次元动漫、三次元的现实照片、还是盲盒模型。因此,在我们确定了我们照片风格之后我们就要去切换大模型,不同的模型就代表着不同的照片风格。也就是SD界面左上角的“Stable Diffusion模型”假如现在我想生成一个真人AI小姐姐,就选用chilloutmix的大模型那么问题来了,我们这些模型从哪来呢?下载的模型放在哪里呢?在我分享给大家的链接里面,有部分比较常用的大模型(后续还有比较好的模型也会分享给大家)大家可以根据文件夹名称找到需要的模型。另外,这篇文章的第三部分会跟大家详细介绍去哪里下载模型,模型存放的位置,所以一定要看到最后!
除了链接里面给大家分享的模型,大家肯定还想去找更多更好看的模型而大多数的模型都是在Civitai(C站)这个网站里面https://civitai.com/现在就给大家说一下C站的使用方法:01.科学上网这个没法教,大家只能自己想办法了02.点击右上角的筛选按钮,在框框里面找到自己需要的模型类型Checkpoint=大模型LoRA=Lora常用的就是这两个03.看照片,看到感兴趣的就点进去点击右边的“Download”,也就是下载,保存到电脑本地,文件保存到哪里在这一节的第二部分另外,我们还可以点击左上角的“Images”这里就是看别人已经做好的图片,找到喜欢的点进去点进去之后的页面我们就可以看到这张图的全部信息,直接点击Lora和大模型,可以直接跳转到下载页面下面的就是照片关键词和其他信息点击最下面的“Copy...Data”就可以复制图片的所有信息回到SD,粘贴到关键词的文本框,点击右边的按钮这些信息就会自动分配要注意的就是,大模型是需要我们手动去换的!这样我们就可以生成出跟大神几乎一样的照片了!(电脑网络配置的不同,出来的照片有细微差别)[heading2]2.模型下载到哪里[content]这里大家就直接看我文件的保存地址,找到自己电脑里的01.大模型这里的SD根目录就是大家在下载时,存放SD的那个文件夹02.Lora03.VAE[heading2]3.如何分辨模型[content]如果我们下载了一个模型,但不知道它是哪个类型的,不知道要放到哪个文件夹我们就可以用到这个秋叶的模型解析工具https://spell.novelai.dev/把模型拖动到空白处接着就会自动弹出模型的信息在模型种类里面就可以看到是什么模型啦!
的去噪结果。然而,这种迭代性质在计算效率上带来了挑战,特别是在处理大尺寸图像和大量扩散步骤(T)时。在采样过程中,从高斯噪声中去噪图像可能需要很长时间。为了解决这一问题,一组研究人员提出了一种新的方法,称为稳定扩散(Stable Diffusion),最初称为潜在扩散模型(Latent Diffusion Models)Stable DiffusionStable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模[heading1]型”(Latent Diffusion Models)[content]CLIP将用户输入的Prompt文本转化成text embedding核心的组件VAE Encoder-DecoderUNETUNET进行迭代降噪,在文本引导下进行多轮预测High-Resolution Image Synthesis with Latent Diffusion ModelsComfyUI存放路径:models/checkpoints/SD1.5SD基础预训练模型SDXLSD1.5模型实例SDXL训练方法DreamBooth,by GoogleEMA-only&pruned VS FullFP16&FP32格式.pt VS.safetensorBake in VAE模型自带已适配的VAESD微调模型概念学习Checkpoint作用source:stable-diffusion-art.com/models/#How_are_models_created1puppy训练要求sd1.512G VARMSDXL16G VARMThe merged model sits between the realistic F222 and the anime Anything V3styles.It is a very good model for generating illustration art with human figures.(source:stable-diffusion-art.com/models/#Example_of_a_merged_model)融合模型checkpoint+checkpointLora+Lora形式checkpoint+LoraBaking VAE