Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Stable Diffusion 模型在哪

Answer

Stable Diffusion 模型可以从以下几个地方获取和存放:

  1. 部分常用的大模型可以在分享的链接中获取,大家可以根据文件夹名称找到需要的模型。
  2. 大多数模型可以在 Civitai(C 站)这个网站(https://civitai.com/)下载。下载方法如下:
    • 科学上网(自行解决)。
    • 点击右上角的筛选按钮,在框框里面找到自己需要的模型类型,如 Checkpoint=大模型、LoRA=Lora 等。
    • 看照片,看到感兴趣的点进去,点击右边的“Download”保存到电脑本地。
  3. 模型存放位置:
    • 大模型:SD 根目录,即下载存放 SD 的那个文件夹。
    • Lora:[具体位置]
    • VAE:[具体位置]
  4. 如果不知道下载的模型是哪个类型,不知道要放到哪个文件夹,可以使用秋叶的模型解析工具(https://spell.novelai.dev/),把模型拖动到空白处,会自动弹出模型的信息。

另外,ComfyUI 存放路径:models/checkpoints/ 。

Content generated by AI large model, please carefully verify (powered by aily)

References

教程:超详细的Stable Diffusion教程

用stable diffusion可以把自己想象成一个画家在起笔画画之前,我们要先确定我们画的是什么风格的画,是二次元动漫、三次元的现实照片、还是盲盒模型。因此,在我们确定了我们照片风格之后我们就要去切换大模型,不同的模型就代表着不同的照片风格。也就是SD界面左上角的“Stable Diffusion模型”假如现在我想生成一个真人AI小姐姐,就选用chilloutmix的大模型那么问题来了,我们这些模型从哪来呢?下载的模型放在哪里呢?在我分享给大家的链接里面,有部分比较常用的大模型(后续还有比较好的模型也会分享给大家)大家可以根据文件夹名称找到需要的模型。另外,这篇文章的第三部分会跟大家详细介绍去哪里下载模型,模型存放的位置,所以一定要看到最后!

教程:超详细的Stable Diffusion教程

除了链接里面给大家分享的模型,大家肯定还想去找更多更好看的模型而大多数的模型都是在Civitai(C站)这个网站里面https://civitai.com/现在就给大家说一下C站的使用方法:01.科学上网这个没法教,大家只能自己想办法了02.点击右上角的筛选按钮,在框框里面找到自己需要的模型类型Checkpoint=大模型LoRA=Lora常用的就是这两个03.看照片,看到感兴趣的就点进去点击右边的“Download”,也就是下载,保存到电脑本地,文件保存到哪里在这一节的第二部分另外,我们还可以点击左上角的“Images”这里就是看别人已经做好的图片,找到喜欢的点进去点进去之后的页面我们就可以看到这张图的全部信息,直接点击Lora和大模型,可以直接跳转到下载页面下面的就是照片关键词和其他信息点击最下面的“Copy...Data”就可以复制图片的所有信息回到SD,粘贴到关键词的文本框,点击右边的按钮这些信息就会自动分配要注意的就是,大模型是需要我们手动去换的!这样我们就可以生成出跟大神几乎一样的照片了!(电脑网络配置的不同,出来的照片有细微差别)[heading2]2.模型下载到哪里[content]这里大家就直接看我文件的保存地址,找到自己电脑里的01.大模型这里的SD根目录就是大家在下载时,存放SD的那个文件夹02.Lora03.VAE[heading2]3.如何分辨模型[content]如果我们下载了一个模型,但不知道它是哪个类型的,不知道要放到哪个文件夹我们就可以用到这个秋叶的模型解析工具https://spell.novelai.dev/把模型拖动到空白处接着就会自动弹出模型的信息在模型种类里面就可以看到是什么模型啦!

第二课 《ComfyUI基础知识》 By 郭佑萌 @ 🌈WaytoAGI 2024.8.15 .pdf

‎的去噪结果。然而,这种迭代性质在计算效率上带来了挑战,特别是在处理大尺寸图像和‎大量扩散步骤(T)时。在采样过程中,从高斯噪声中去噪图像可能需要很长时间。为了解‎决这一问题,一组研究人员提出了一种新的方法,称为稳定扩散(Stable Diffusion),‎最初称为潜在扩散模型(Latent Diffusion Models)‎Stable Diffusion‎Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模[heading1]‎型”(Latent Diffusion Models)[content]‎CLIP‎将用户输入的Prompt文本转化成text embedding‎核心的组件‎VAE Encoder-Decoder‎UNET‎UNET进行迭代降噪,在文本引导下进行多轮预测‎High-Resolution Image Synthesis with Latent Diffusion Models‎ComfyUI存放路径:models/checkpoints/‎SD1.5‎SD基础预训练模型‎SDXL‎SD1.5‎模型实例‎SDXL‎训练方法‎DreamBooth,by Google‎EMA-only&pruned VS Full‎FP16&FP32‎格式‎.pt VS.safetensor‎Bake in VAE‎模型自带已适配的VAE‎SD微调模型‎概念学习‎Checkpoint‎作用‎source:stable-diffusion-art.com/models/#How_are_models_created‎1puppy‎训练要求‎sd1.5‎12G VARM‎SDXL‎16G VARM‎The merged model sits between the realistic F222 and the anime Anything V3‎styles.It is a very good model for generating illustration art with human figures.‎(source:stable-diffusion-art.com/models/#Example_of_a_merged_model)‎融合模型‎checkpoint+checkpoint‎Lora+Lora‎形式‎checkpoint+Lora‎Baking VAE

Others are asking
Stable Diffusion 教程
以下是关于 Stable Diffusion 的教程: Stable Diffusion 是什么: 稳定扩散(Stable Diffusion)是一个 AI 自动生成图片的软件,通过输入文字就能生成对应的图片。 入门教程: 新人视频教程:https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe 文字教程:https://zhuanlan.zhihu.com/p/622238031 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 为什么要学 Stable Diffusion 及其强大之处: 学习 Stable Diffusion 非常简单,目的是花更少时间快速入门。 它可以生成真人 AI 美女、头像、壁纸,辅助绘画,还能用于恢复画质、室内设计等,有很多功能和应用场景。 希望以上内容对您有所帮助。
2025-03-04
本地部署stable-diffusion
以下是关于本地部署 Stable Diffusion 的详细步骤: 1. 准备工作: 电脑配置需能支持 SD 运行。 2. 下载整合包: 可以选择 B 站秋叶分享的整合包,链接:https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru 。 3. 安装整合包: 打开链接,下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 选择解压到 D 盘或者 E 盘,避免 C 盘被占满,点击确定。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 4. 启动和配置: 双击启动器,等待更新,接着点击左边第二个“高级选项”。 在显存优化里,根据自己电脑的显存选择(即查看的专用 GPU 内存)。 回到第一个一键启动,点击右下角的一键启动。 若出现报错,可回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。 5. 注意事项: 并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。 xFormers 能极大地改善内存消耗和速度,建议开启。 Stable Diffusion webui 的更新比较频繁,可根据需求在“版本管理”目录下更新。 同样地,也请注意插件的更新。在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。
2025-03-02
关于Stable Diffusion,个人本地附属,对机器的配置要求
Stable Diffusion 本地化部署对机器配置有一定要求: 1. 电脑系统:需为 Win10 或者 Win11,避免使用更低版本的系统。查看电脑系统的方法为在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 2. 电脑性能: 运行内存:8GB 以上。查看方法为鼠标右击桌面底部任务栏,点击“任务管理器”,在“性能”里面找到“内存”,只要看图中划线的参数即可。8GB 勉强达到标准,16GB 可正常使用,32GB 能非常自由地使用。 显卡:需为英伟达(俗称 N 卡)的显卡,显卡内存 4GB 以上。查看方法为在任务管理器中先看右上角显卡的名字或型号,确认是 NVIDIA 后,再查看显存,4GB 显存可运行 SD,推荐 8GB 以上显存。 如果电脑配置不够,可选择云端部署(Mac 也推荐云端部署),或者先试试简单的无界 AI。
2025-02-27
stable diffusion学习
以下是关于 Stable Diffusion 学习的相关内容: 一、为什么要学 Stable Diffusion 以及它的强大之处 简单来说,Stable Diffusion 是一个 AI 自动生成图片的软件。通过输入文字就能生成对应的图片,无需像以前那样画图或拍照。学习它非常简单,目的是花更少时间快速入门。如果时间充裕,了解其原理也可以。 二、学习 SD 的 Web UI 步骤 1. 安装必要的软件环境 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 三、Stable Diffusion 的原理及相关组件 1. 在传统扩散模型中存在计算效率挑战,Stable Diffusion 是为解决此问题提出的新方法,最初称为潜在扩散模型。 2. Stable Diffusion 是扩散模型的变体,核心组件包括: CLIP:将用户输入的 Prompt 文本转化成 text embedding。 VAE EncoderDecoder。 UNET:进行迭代降噪,在文本引导下进行多轮预测。 此外,还涉及 ComfyUI 存放路径、不同的模型(如 SD1.5、SDXL)、训练方法(如 DreamBooth)、模型格式(如.pt 和.safetensor)、微调模型、融合模型等内容。
2025-02-16
我想了解diffusion技术相关的重要论文
以下是一些与 diffusion 技术相关的重要论文: 《HighResolution Image Synthesis with Latent Diffusion Models》:https://arxiv.org/abs/2112.10752 《Denoising Diffusion Probabilistic Models》:作者为 Ho、Jain、Abbeel,出自 Berkeley (2020)
2025-02-16
stable diffusion
稳定扩散(Stable Diffusion)是一种扩散模型的变体,最初称为潜在扩散模型(Latent Diffusion Models)。 在传统扩散模型中,反向扩散过程通过 UNet 结构将全尺寸图像逐步传递以获得去噪结果,但存在计算效率挑战。为解决此问题,研究人员提出了稳定扩散。 其核心组件包括: 1. CLIP:将用户输入的 Prompt 文本转化成 text embedding。 2. VAE EncoderDecoder。 3. UNET:进行迭代降噪,在文本引导下进行多轮预测。 稳定扩散的运作方式是消除图像中的噪点。比如在太暗情况下拍照产生的颗粒状即噪点,它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界和书面语言来指导噪点消除过程。 稳定扩散是逐步去除噪点的,有“推理步骤”滑块。 ComfyUI 使用预训练的扩散模型(如 Stable Diffusion 模型)作为核心,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等模型。当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示以捕捉语义信息。 在 ComfyUI 的节点化界面中,每一步操作可通过不同模块实现,用户可控制潜在空间中的操作(如调度器和噪声选择)、UNet 中的推理步骤(通过去噪模块实现)以及条件输入(通过文本提示或图像引导)。 稳定扩散的相关模型有 SD1.5、SDXL 等,训练方法有 DreamBooth 等。模型格式有.pt 和.safetensor,还有融合模型等形式。训练要求方面,SD1.5 需 12G VARM,SDXL 需 16G VARM。
2025-02-14
stable difussion 可以生成视频吗
Stable Diffusion 中的 Stable Video Diffusion 可以生成视频。 Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,它是一种用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。该模型不仅支持文本、图像生成视频,还支持多视角渲染和帧插入提升视频帧率。用户可以调整模型选择、视频尺寸、帧率及镜头移动距离等参数。 当时,Stable Video Diffusion 开源了两种图生视频的模型,一种是能够生成 14 帧的 SVD,另一种则是可以生成 25 帧的 SVDXL。在以基础形式发布时,通过外部评估,发现这些模型超越了人类偏好研究中领先的封闭模型。 其主要贡献包括:提出一个系统的数据管理工作流程,将大量未经管理的视频集合转变为用于生成视频建模的高质量数据集;使用此工作流程,训练最先进的文本到视频和图像到视频模型,其性能优于所有现有模型;通过进行特定领域的实验来探索 SVD 模型中运动和 3D 理解的强先验。具体来说,预训练的视频扩散模型可以转变为强大的多视图生成器,这可能有助于克服 3D 领域中的数据稀缺问题。 Stability AI 还推出了基于 Discord 的媒体生成和编辑工具,其中的视频功能基于初始图像使用 Stable Video Diffusion 生成短视频。 在云部署实战方面,关于上面的两个模型依赖权重可在百度网盘获取,关注公众号「魔方 AI 空间」,回复【SVD】即可。手动下载下来后,分别放到指定路径。在准备工作做好后,再次运行,复制 url 到浏览器中打开。点击下拉箭头,可以选择不同模型版本,再勾选 load Model。SVD 本地部署目前仅支持图生视频,图片来源可以选择 AI 绘画工具如 Midjourney、Stable Diffusion 等生成图片,然后再上传到 SVD 进行视频的生成,同时可以调左侧的一些参数,控制视频的生成效果。视频生成的保存路径在 outputs 下。 但需要注意的是,SVD 模型对硬件要求较高,对于缺乏硬件资源的普通用户有一定限制,同时其支持的图片尺寸较小,限制了它的应用场景。尽管 SVD 与其他商用产品在帧率、分辨率、内容控制、风格选择和视频生成时长等方面存在差距,但其开源属性和对大规模数据的有效利用构成了其独特优势。
2025-02-25
stable difussion controlnet
Stable Diffusion 相关信息: Stable Diffusion 3.5 已发布,我们对安全高度重视并采取措施防止不良行为者滥用。10 月 29 日将公开发布 Stable Diffusion 3.5 Medium,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 ControlNet 允许通过线稿、动作识别、深度信息等对生成的图像进行控制。使用前需确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步。基本流程包括点击 Enable 启用该项 ControlNet,选择合适的 Preprocessor、调整 Weight 和 Guidance strength 等,还有一些特殊设置如 Invert Input Color、RGB to BGR、Low VRAM、Guess Mode 等。 用 Stable Diffusion 装饰二维码的方法:首先使用 img2img 生成类似于 QR 码的图像,在采样步骤中打开 ControlNet 以将 QR 码压印到图像上,在采样步骤接近尾声时关闭 ControlNet 以提高图像的一致性。具体步骤包括选择检查点模型、输入提示和否定提示、上传二维码到 img2img 画布、设置图像到图像的相关参数、将二维码上传到 ControlNet 的图像画布并设置 ControlNet 的相关参数,最后按生成并用手机查看二维码。
2025-02-25
大模型稳定输出
大模型在稳定输出方面具有以下特点和相关情况: 在翻译场景中: 突破传统翻译模型局限,大幅提升翻译质量,为广泛应用带来机遇。 能够通过深度上下文分析理解语言真正含义,适应不同语境,避免词不达意和语境脱节,精准捕捉并传达原文意图,尤其在处理隐喻、习语或文化特征文本时表现出色。 生成更流畅、自然且地道的翻译,接近母语水平,保持原文语言风格和情感色彩,更具亲和力和感染力。 具有强大适应性,能根据不同翻译场景灵活调整策略,在多场景翻译中更具灵活性和精准度。 能够深入理解文化内涵,避免因文化差异导致误解或偏差,在专业领域能提供更专业且符合行业标准的翻译结果。 在旅行青蛙智能体搭建过程中: 涉及多个意图分支,如定向旅行、投喂青蛙、在家休息等,每个分支包含多个大模型节点和相关操作。 关于大模型是否具有道德观念: 大型语言模型本身不具有真正的道德观念或意识,它们是通过大量数据训练来模拟语言统计规律的。 但可以被设计用来识别和生成包含道德观念内容的文本。 为确保其输出符合社会道德和伦理标准,采取了多种方法,如数据清洗、算法设计、制定准则、保持透明度、用户反馈、持续监控、人工干预以及教育和培训等。然而,确保 AI 模型的道德和伦理性仍是复杂且持续的挑战,相关标准也在不断演进。
2025-03-04
redux模型
Redux 模型是一个轻量级模型,具有以下特点和应用: 1. 可与 Flux.1配合使用,基于 1 个输入图像生成图像变体,无需提示,适合快速生成特定样式的图像。 2. 位置:将 Redux 模型下载到 comfyui/models/style_models,下载 sigclip_patch14384.safetensors 到 ComfyUI/models/clip_vision。 3. 重绘节点:ComfyUIInpaintEasy,相关链接:https://github.com/CYCHENYUE/ComfyUIInpaintEasy 。 4. 在工作流中的应用: 用于电商服饰行业的换装、虚拟试穿等场景,提升效果并简化工作流。 模特生成:加入 Redux 模型,强度不用太高,让提示词生效(Reduxprompt 节点风格细节等级 1=27×27 最强,14=1×1 最弱)。 服装高精度处理:使用 Flux 的 fill 模型,提示词书写格式为这是一组图片,左边是衣服,右边的模特穿着左边的衣服,Redux 权重调整为最大。 FLUX.1 Redux 还适用于所有 FLUX.1 基本模型,用于生成图像变化,给定输入图像能重现具有轻微变化的图像,自然集成到更复杂工作流程中,通过提示解锁图像重新设计。最新型号 FLUX1.1Ultra 支持该功能,允许组合输入图像和文本提示,创建具有灵活宽高比的高质量 4 兆像素输出。
2025-03-04
Joy_caption_two_load模型
Joy_caption_two_load 模型相关信息如下: 下载地址: 模型可从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载,存放文件夹为 Models/LLM/MetaLlama3.18Bbnb4bit 。 网盘链接:https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 ,存放文件夹为 models/Joy_caption 。 此外,还有 MiniCPMv2_6提示生成器+CogFlorence 可从 https://huggingface.co/pzc163/MiniCPMv2_6promptgenerator 和 https://huggingface.co/thwri/CogFlorence2.2Large 下载。 节点安装地址:D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 安装步骤: (Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat ,注意 transformers 版本不能太低。 下载模型或者运行 comfyui 自动下载模型到合适文件夹。 模型安装: Joy_caption ,运行自动下载模型(推荐手动下载)。 三个模型(页面显示和实际大小有一定差异): 3.5G,放到:你的\\ComfyUI\\models\\clip\\siglipso400mpatch14384 。 5.7G,放到:你的\\ComfyUI\\models\\LLM\\MetaLlama3.18Bbnb4bit 。 86MB,放到:你的\\ComfyUI\\models\\Joy_caption 。 相关模型介绍: Joy Caption 模型在 SigLIP 和 Llama3.1 的基础之上,使用 Adapter 模式,训练出更好的描述图像的模型,需要与 SigLIP 和 Llama3.1 混合使用,输入图像,输出一段语义丰富的图像描述。 Google 的 SigLIP 是一种改进的多模态模型,类似于 CLIP,但是采用了更优的损失函数。 MetaLlama3.18Bbnb4bit 是优化的多语言大语言模型,基于 Meta 的 Llama 3.1 架构,使用 BitsAndBytes 库进行 4bit 量化,大幅减少内存使用,同时保持模型性能。 模型工作流程: siglipso400mpatch14384(视觉模型): 接收输入图像。 分析图像的视觉内容(如物体、场景、颜色、纹理等)。 将这些视觉信息编码成一组特征向量。 image_adapter.pt(适配器): 接收来自视觉模型的特征向量。 转换和调整这些特征,使其适合语言模型处理。 一些特定任务的优化或微调(如图片到文字)。 MetaLlama3.18Bbnb4bit(语言模型): 接收经过适配器处理的特征。 基于这些特征生成相应的文本描述。 应用语言知识来确保描述的连贯性和准确性。
2025-03-04
小公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小公司想要部署一个能对运维、运营、客服、美术、策划、程序都有帮助的本地 AI 系统,以下是一些相关信息: 线上和线下本地部署的 AI 特点: 线上部署的优势在于出图速度快,不依赖本地显卡配置,无需下载大型模型,还能参考其他创作者的作品,但出图尺寸受限。线下部署的优势是可添加插件,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。建议线上用于找参考、测试模型,线下作为主要出图工具。 Ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件。 支持自定义模型,可调整参数。 提供 REST API 用于运行和管理模型,以及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 Google Gemma: 是 Google 发布的家用版小模型,有 2b(20 亿参数)和 7b(70 亿参数)版本。小模型可能不适合复杂任务,但适合提升基础操作效率。部署环境友好,可通过 ollama 方便部署,支持热加载模型文件。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,对非英文语种反馈不稳定。 综合考虑,如果您的公司对出图质量要求较高,且有较好的硬件配置,可以选择线下部署结合线上测试的方式。在语言模型方面,Ollama 具有较多优势,可根据具体需求选择合适的模型进行部署。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、策划和程序等方面,以下是一些建议和相关信息: 目前市面上的 AI 模型各有特点。线上 AI 具有出图速度快、不依赖本地显卡配置、无需下载大型模型以及能参考其他创作者作品等优势,但出图尺寸受限。线下部署的 AI 可以添加插件、出图质量高,但可能导致电脑宕机且对配置要求高。 在游戏领域,AI 大模型带来了诸多变化,如游戏内容辅助生成(包括文、图、3D 和音乐),可应用于游戏策划人和美术设计师。文生图和图生图能提高创作效率,动画辅助渲染可改变角色风格,游戏智能运营涵盖智能 NPC 互动、客服、攻略问答和代码脚本生成等,适用于产品经理、运营经理和社区运营经理。 Google 刚刚发布的家用版小模型 Gemma 有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这类小模型可能不太适合处理复杂任务,但代表了模型本地化提升基础操作效率的趋势。Ollama 是一个开源的大型语言模型服务,方便部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,且像小型的 llama 也支持本地部署。部署时,需进入 ollama.com 下载程序并安装,通过命令提示符进行操作和切换模型。2b 反应速度快但互动话题有限,7b 输出质量高但可能卡顿,且对非英文语种反馈不太稳定。 综合考虑,小游戏公司可以根据自身需求和硬件配置选择合适的 AI 模型。如果对出图质量要求高且有较好的硬件配置,可尝试线下部署;若更注重效率和便捷性,线上模型可能更适合。同时,也可以考虑像 Gemma 这样的小模型进行本地化部署以提升基础操作效率。
2025-03-04
小游戏公司, 想部署一个本地ai系统,希望它能够, 对运维, 运营, 客服, 美术, 策划, 程序都能够有很大的帮助, 目前市面上那款 ai 模型比较合适
对于小游戏公司部署本地 AI 系统以帮助运维、运营、客服、美术、策划、程序等方面,以下是一些建议和目前市面上合适的 AI 模型分析: 线上 AI 平台的优势在于出图速度快,对本地显卡配置要求低,无需下载大型模型,还能参考其他创作者的作品,但出图分辨率有限制。 线下部署的优势是可以添加插件,出图质量高,但使用时电脑可能宕机,配置不高还可能爆显存导致出图失败。 综合考虑,建议充分发挥线上和线下平台的优势。线上可用于找参考、测试模型,线下作为主要出图工具。 在图像生成方面,2022 年主流生成式图像应用如 DALLE 2.0、Stable Diffusion 和 Midjourney 使图像生成精细化程度提升,提示对图像生成结果的控制能力增强。 在 3D 模型生成中,AI 能完成 3D 模型生成流程的“一步到位”,大大提升效率。 在游戏开发中,AI 可用于游戏内容辅助生成(如文、图、3D、音乐)、动画辅助渲染、游戏智能运营(包括智能 NPC 互动、客服、攻略问答、代码和脚本生成)等。 对于小游戏公司,Stable Diffusion 可能是一个较为合适的选择,它在 2D 美术素材辅助生成方面能够提高创作效率、降低成本,并且有多种应用场景,如文生图、图生图等。同时,也可以考虑结合线上平台进行参考和测试。
2025-03-04