直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

通过阅读财报数据,提取其中的数据生成表格,怎么实现?

回答

通过阅读财报数据并提取信息生成表格,可以通过以下几个步骤实现:

  1. 获取财报文件:首先,你需要获取公司的财报文件,这些文件通常以PDF、Word文档或Excel电子表格的形式提供。

  2. 选择合适的工具:根据财报文件的格式,选择合适的工具来读取文件内容。例如,对于PDF和Word文档,可以使用Python的PyPDF2python-docx库;对于Excel文件,可以使用pandas库。

  3. 文本提取:使用所选工具提取文档中的文本内容。例如,使用PyPDF2库可以提取PDF中的文本。

  4. 数据清洗:提取的文本可能包含格式错误、多余的空格或特殊字符等,需要进行数据清洗,以便于分析。

  5. 信息识别与提取:识别文本中的关键财务数据,如收入、利润、成本等。这可能需要使用正则表达式来匹配特定的数字格式和相关的财务术语。

  6. 数据结构化:将提取的数据结构化,通常意味着将数据放入一个表格中,如CSV格式或数据库表中。可以使用pandas库来创建DataFrame对象,然后导出为Excel或CSV文件。

  7. 生成表格:使用表格生成工具或软件,如Microsoft Excel、Google Sheets或pandas库,将结构化的数据生成表格。

  8. 数据验证:验证提取的数据是否准确无误,必要时进行手动校正。

  9. 自动化:对于重复性的任务,可以编写脚本或程序自动化上述过程。

下面是一个简单的Python示例,演示如何使用pandaspython-docx库从Word文档中提取财报数据并生成表格:

import pandas as pd
from docx import Document

# 加载Word文档
doc = Document('path_to_financial_report.docx')

# 创建空的DataFrame
df = pd.DataFrame()

# 遍历文档中的每个段落
for para in doc.paragraphs:
    # 使用正则表达式匹配财务数据
    match = re.search(r'收入: (\d+)', para.text)  # 假设我们正在查找收入数据
    if match:
        # 提取数字并添加到DataFrame
        revenue = int(match.group(1))
        df = df.append({'收入': revenue}, ignore_index=True)

# 导出DataFrame到Excel
df.to_excel('financial_report.xlsx', index=False)

请注意,这只是一个简化的示例,实际的财报数据提取可能要复杂得多,需要根据具体的财报格式和所需数据进行调整。此外,对于非结构化数据(如PDF或扫描的文档),可能需要使用OCR(光学字符识别)技术来提取文本。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
财报摘要整理的ai
以下是关于财报摘要整理的 AI 相关信息: 目前,文本生成在多个领域广泛应用,如媒体广告、教育和法律等。AIGC 能根据给定主题或关键词自动生成新闻报道、文章摘要、广告文案等文本内容。 在医疗领域,AI 技术协助医生分析大量医疗数据,包括病历、影像资料等,有助于制定更精准的诊断方案和治疗计划,提高医疗质量和效率。在金融领域,证券 AI 智能投研可生成研报、进行财务数据查询、盈利预测和提供投资组合建议;银行智能风控通过分析客户信用历史和行为特征等数据,挖掘风险因素,实现信贷风险、反欺诈、反洗钱等行为预警。 从产品形态上,业内普遍认为 AI 应用将沿着 AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(智能体)四个重要方向演进。 此外,智能摘要功能能够辅助快速筛选信息,实现信息降噪。近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,在不断颠覆传统的搜索引擎。
2024-08-14
如何用Kimi有效的分析上市公司财报
如果您想使用 Kimi 有效地分析上市公司财报,可以尝试以下步骤: 1. 明确分析目标:首先,您需要明确您的分析目标。例如,您可能想了解公司的财务健康状况、盈利能力、偿债能力等方面的信息。 2. 收集财报数据:收集您想要分析的公司的财报数据。您可以从公司的官方网站、证券交易所、财经新闻网站等渠道获取财报数据。 3. 导入财报数据:将收集到的财报数据导入到 Kimi 中。您可以使用 Kimi 的数据导入功能,将财报数据转换为 Kimi 可以识别的格式。 4. 使用 Kimi 进行分析:使用 Kimi 的分析功能,对财报数据进行分析。例如,您可以使用 Kimi 的财务比率分析功能,计算公司的各种财务比率,如流动比率、速动比率、资产负债率等。 5. 解读分析结果:解读 Kimi 的分析结果,了解公司的财务状况。您可以使用 Kimi 的图表功能,将分析结果以图表的形式展示出来,以便更好地理解分析结果。 6. 综合分析:除了对财报数据进行分析外,您还可以结合公司的其他信息,如公司的业务模式、市场竞争情况、行业发展趋势等,进行综合分析。 7. 得出结论:根据分析结果,得出结论。您可以使用 Kimi 的报告功能,将分析结果和结论生成报告,以便更好地与他人分享您的分析结果。 需要注意的是,Kimi 是一个人工智能,它的分析结果仅供参考。在进行财报分析时,您还需要结合自己的专业知识和经验,进行综合判断。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
2024-04-19
用于分析excel表数据的AI工具
以下是一些可用于分析 Excel 表数据的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户能以聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,Omni 的计算 AI 功能能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
大小模型协同有哪些数据
大小模型协同的数据来源广泛且多样,主要包括以下方面: 大模型方面: 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。 像 GPT3 这样的大模型参数众多。 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。 小模型方面: 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。 大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2024-11-13
现有能分析EXCEL数据的AI
目前能够分析 Excel 数据的 AI 工具和插件主要有以下几种: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。 此外,ChatGPT 也可以助力数据分析,其流程为:SQL 分析时,用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行并将结果数据传给 GPT 进行学习和分析,最后输出分析结论和建议,与结果数据一起返回前端页面渲染图表、展示分析结论;个性化分析时,用户上传文件并描述辅助信息,前端解析后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
2024-11-11
在语音数据的标注中你有什么针对你行业(车载语音助手)的特殊标注规则
在车载语音助手这一行业的语音数据标注中,特殊标注规则如下: 1. 音素覆盖:在录音开始前构建基础的文本前端,具备简单的文本转音素(G2P)系统。录音文本要保持多样性,音素或音素组合尽可能覆盖全,统计音素序列中的 NGram,避免某些音素或组合出现频次过高或过少。 2. 场景定制:收集车载播报的常用话术、专业术语(如油量、胎压等)、音乐名或歌手名、地名和新闻播报。对业务有一定理解,并在一开始就和需求方紧密沟通。 3. 文本正确性:确保录音文本拼写无误,内容正确,删除脏话、不符合宗教信仰或政治不正确的语句。
2024-11-11
分析90万行数据,用什么AI
以下是一些可用于分析 90 万行数据的 AI 工具和方法: 1. Excel 相关的 AI 工具和插件: Excel Labs:是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 Microsoft 365 Copilot:整合了多种办公软件,能通过聊天形式完成用户提出的数据分析等任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、文本生成、情感分析、语言翻译等任务。 2. ChatGPT 也可助力数据分析,例如通过 SQL 分析平台自身使用情况,或进行个性化分析,分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图切换。 需要注意的是,随着技术发展,未来可能会有更多更适合的 AI 功能和工具出现。同时,在使用这些工具时,要确保数据的安全性和合规性。
2024-11-10
什么工具能进行AI数据表格处理
以下是一些能够进行 AI 数据表格处理的工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 AI 相关的产品数据表格排行: |AI 产品数据表格_排行|AI 产品数据表格_产品名|AI 产品数据表格_分类|AI 产品数据表格_4 月访问量(万 Visit)|相对 3 月变化| |||||| |1||表格|175|0.036| |2|Highcharts|表格|127|0.257| |3|Numerous.ai|表格|73.4|0.911| |4|Coefficient|表格|69|0.213| |5|GPTExcel|表格|37|1.139| |6|Rows AI|表格|34|0.115| |7|SheetGod|表格|26|0.016| |8|AI Excel Bot|表格|25.3|0.103| |9|OpenAI in Spreadsheet|表格|17|0.091| |10|GPT Workspace|表格|17|0.189|
2024-11-10
表格数据分析
以下是关于表格数据分析的相关内容: ChatGPT 助力数据分析: 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT 查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段,可用 count/substring 等函数处理。 系统提示是表结构信息,对难以理解的字段可告知 GPT 其意义,若有多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射以渲染图表,根据结果数据的维度选择不同的 prompt 传递给 GPT,且结果数据 tableData 已通过 SQL 查询,不能让 GPT 再次生成,以免耗时。 生成式 AI 季度数据报告 2024 月 1 3 月: 数据来源:Similarweb、Visit,单位:万,变化公式:3 月/2 月 1 100%。 包括数据分析(446 万)、天花板潜力(1000 亿美元)、对标公司(oracle)、总体趋势(快速增长,88.19%)、月平均增速(70 万 PV/月)、原生产品占比(高)、竞争情况(Top1、Top3 占比,马太效应、网络效应强弱,大厂是否入局及占比,技术门槛)、Top1 公司(非大厂)的相关信息等。 还提供了 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况、赛道月访问总量及构成、23 年 4 月访问量 Top10 等数据。 58 数据分析 161 万: 包含名称、二级分类、三级分类、网址、2 月至 11 月的数据及 11/5 月的变化计算等信息,如帆软数据、RATH、rows.com、亚信科技数智产品、神策数据等。
2024-11-10
AI表格数据处理
以下是关于 AI 表格数据处理的相关信息: 人工智能的分类: AI 分为 ANI(弱人工智能)和 AGI(通用人工智能)。ANI 得到巨大发展,可做如智能音箱、网站搜索、自动驾驶、工厂与农场应用等特定任务;AGI 则能做任何人类可以做的事,但目前还未取得巨大进展。 机器学习与数据: 监督学习是从输入到输出的过程。近期监督学习快速发展得益于数据快速增长、神经网络规模发展以及算力快速发展。数据集是以表格形式出现的数据集合,每一列代表特定变量,每一行对应某一成员的数据集问题。数据获取方式包括手动标注、观察行为、网络下载。使用数据时,可将搜集的数据展示或提供给 AI 团队,以协助梳理。数据分为结构化数据(可放在巨大表格中)和非结构化数据(如图片、视频、文本,机器处理更难)。 Excel 中的 AI 工具: 目前有几种增强 Excel 数据处理和分析能力的工具和插件,如 Excel Labs(基于 OpenAI 技术,新增生成式 AI 功能)、Microsoft 365 Copilot(整合办公软件,通过聊天形式完成任务)、Formula Bot(提供数据分析聊天机器人和公式生成器功能)、Numerous AI(支持 Excel 和 Google Sheets,可生成公式、文本内容等)。未来可能会有更多 AI 功能集成到 Excel 中,提高工作效率和智能化水平。 表格 Top10 的 AI 产品数据: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|Highcharts|表格|235|0.389| |2|Fillout.com|表格|186|0.147| |3|Coefficient|表格|46|0.251| |4|Numerous.ai|表格|41|0.087| |5|SheetGod|表格|31|0.033| |6|GPTExcel|表格|25|0.364| |7|酷表 ChatExcel|表格|18|0.159| |8|GPT Workspace|表格|17|0.213| |9|OpenAI in Spreadsheet|表格|12|0.314| |10|Ajelix AI Excel Tools|表格|10|0.145|
2024-11-05
对于表格访问读写 ,有什么AI好用的工具
以下是一些在表格访问读写方面好用的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,允许用户直接在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 将自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-01
使用AI总结表格数据
以下是对您提供的表格数据和学习笔记的总结: 表格数据总结: 这是一份关于 AI 产品 2024 年 1 至 3 月长视频的总结数据,包含了产品名称(如 Glarity、Eightify 等)以及 12 月至 3 月每个月的数据情况(如 12 月、1 月、2 月、3 月的数据),还有 3 月变化和 12 月至 3 月的变化情况。 学习笔记总结: 人工智能分为 ANI(弱人工智能)和 AGI(通用人工智能),ANI 发展迅速但 AGI 进展不大。ANI 只能做特定的事,如智能音箱、网站搜索、自动驾驶等。 机器学习中的监督学习是从输入到输出,近期监督学习快速发展得益于数据增长、神经网络规模发展和算力提升。 数据集通常以表格形式出现,每列代表特定变量,每行对应成员。获取数据的方法有手动标注、观察行为和网络下载。使用数据时可先展示给 AI 团队,数据可能存在不正确或缺失的情况,且分为结构化和非结构化数据,非结构化数据机器处理更难。
2024-10-31
有可以生成表格 或者流程图的ai吗
以下是一些可以生成表格或流程图的 AI 工具: 1. Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. Microsoft Visio: 简介:Microsoft Visio 是专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能: 集成 Office 365,方便与其他 Office 应用程序协同工作。 丰富的图表类型和模板。 支持自动化和数据驱动的图表更新。 官网: 3. : 简介: 是一个免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能: 支持本地和云存储(如 Google Drive、Dropbox)。 多种图形和模板,易于创建和分享图表。 可与多种第三方工具集成。 官网: 利用这些 AI 工具,您可以快速、高效地创建专业的示意图,满足各种工作和项目需求。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-29
将视频的图片和声音提取出来用什么工具
以下是一些可以用于提取视频图片和声音的工具及方法: 1. 提取视频帧:可以使用 OpenCV 从视频中提取帧。 2. 处理和讲述视频:可以利用 GPT 的视觉功能和 TTS API。 3. 制作小说视频: 小说内容分析:使用 AI 工具如 ChatGPT 提取关键场景、角色和情节。 生成角色与场景描述:使用工具如 Stable Diffusion 或 Midjourney 生成视觉描述。 图像生成:使用 AI 图像生成工具创建图像。 视频脚本制作:将关键点和生成的图像组合成脚本。 音频制作:利用 AI 配音工具如 Adobe Firefly 转换语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件如 Clipfly 或 VEED.IO 合成视频。 后期处理:对视频进行剪辑、添加特效和转场。 审阅与调整:根据需要调整。 输出与分享:完成编辑后输出并分享。 4. 声音训练及推理:基于 Sovits 进行训练。 准备数据集:百度网盘:https://pan.baidu.com/s/14iK32JKIPvjmf1Kfq21mzg?pwd=hjhj 提取码:hjhj 处理提取的声音:使用 iZotope RX 去掉混响和杂音。链接:https://pan.baidu.com/s/1NXh67SViKm39zT08U7zg?pwd=kmhd 提取码:kmhd 安装时记得勾选 vst3 和 aax。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-11-14
哪款AI能高效提取文章/文件的核心信息?
以下是一些能够高效提取文章或文件核心信息的 AI 工具: 1. 文献管理和搜索方面: Zotero:结合 AI 技术,可自动提取文献信息,助力管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作方面: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析方面: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 此外,在收集和整理资料方面,可利用以下工具和方法: 1. 收集资料: 如使用 Perplexity.AI 的强大搜索功能,还可启用 Pro 功能获取更专业深入的结果。也可使用微软的 Bing 搜索引擎等具备联网搜索功能的工具,快速搜集大量相关资料。 2. 整理资料: 可使用月之暗面开发的 Kimi 这个 AI 会话助手,分批次提供资料以克服其阅读能力限制,让其整理资讯内容。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
推荐一个视频文案提取的AI工具
以下为您推荐几个视频文案提取的 AI 工具: 1. Reccloud:这是一个免费的在线 AI 字幕生成工具,能直接上传视频进行精准识别,还能对识别的字幕进行翻译,自动生成双语字幕。它宣称已处理 1.2 亿+视频,识别准确率接近 100%。 2. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务。支持 95 种语言,准确率高达 98%,还能自定义视频字幕样式,包括字体、颜色、大小、位置等。 3. Arctime:可对视频语音自动识别并转换为字幕,甚至支持自动打轴。支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 4. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-08
用哪个ai可以将图片中的公示提取出来
目前常见的能够提取图片中公式的 AI 工具包括但不限于以下几种: 1. 一些专门的 OCR(光学字符识别)工具,它们经过训练可以识别图片中的文字和公式,并将其转换为可编辑的文本格式。 2. 部分具有图像识别和文本处理能力的综合性 AI 平台,可能具备提取图片中公式的功能。 需要注意的是,不同工具的识别准确率和适用场景可能会有所差异,您可以根据具体需求进行选择和尝试。
2024-11-07
如果我希望搜索尽可能全部的含有相关搜索词的论文并提取其特定信息呢
目前知识库中没有关于如何搜索尽可能全部的含有相关搜索词的论文并提取其特定信息的内容。但一般来说,您可以通过以下几种方式来尝试: 1. 利用专业的学术数据库,如 Web of Science、Scopus 等,设置精确的搜索词和筛选条件。 2. 尝试使用多个不同的学术搜索引擎,以扩大搜索范围。 3. 运用高级搜索技巧,例如布尔逻辑运算符(AND、OR、NOT)来优化搜索词组合。 4. 对于提取特定信息,可以先确定所需信息的类型和特征,然后借助相关的文献管理工具或数据挖掘软件来辅助处理。
2024-11-06
提取视频中的语音转文字
要提取 B 站视频中的字幕文字内容,可按以下步骤操作: 1. 打开 B 站视频,如果在视频栏下面有字幕按钮,说明该视频作者已上传字幕或后台适配了 AI 字幕。 2. 安装油猴脚本: 。 3. 安装后刷新浏览器,点击字幕,会看到多出一个“下载”按钮。 4. 点击下载按钮,弹出窗口,可选择多种字幕格式,如带时间的或者不带时间的。 5. 最后将下载的字文字内容全选复制发送给 GPTs 即可。 需要注意的是,对于有字幕的视频,目前大部分用 AI 总结视频的工具/插件/应用都是通过获取字幕来实现的。直接用语音转文字的方式效率较低。
2024-11-04