Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI表格数据处理

Answer

以下是关于 AI 表格数据处理的相关信息:

人工智能的分类: AI 分为 ANI(弱人工智能)和 AGI(通用人工智能)。ANI 得到巨大发展,可做如智能音箱、网站搜索、自动驾驶、工厂与农场应用等特定任务;AGI 则能做任何人类可以做的事,但目前还未取得巨大进展。

机器学习与数据: 监督学习是从输入到输出的过程。近期监督学习快速发展得益于数据快速增长、神经网络规模发展以及算力快速发展。数据集是以表格形式出现的数据集合,每一列代表特定变量,每一行对应某一成员的数据集问题。数据获取方式包括手动标注、观察行为、网络下载。使用数据时,可将搜集的数据展示或提供给 AI 团队,以协助梳理。数据分为结构化数据(可放在巨大表格中)和非结构化数据(如图片、视频、文本,机器处理更难)。

Excel 中的 AI 工具: 目前有几种增强 Excel 数据处理和分析能力的工具和插件,如 Excel Labs(基于 OpenAI 技术,新增生成式 AI 功能)、Microsoft 365 Copilot(整合办公软件,通过聊天形式完成任务)、Formula Bot(提供数据分析聊天机器人和公式生成器功能)、Numerous AI(支持 Excel 和 Google Sheets,可生成公式、文本内容等)。未来可能会有更多 AI 功能集成到 Excel 中,提高工作效率和智能化水平。

表格 Top10 的 AI 产品数据: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |-|-|-|-|-| |1|Highcharts|表格|235|0.389| |2|Fillout.com|表格|186|-0.147| |3|Coefficient|表格|46|-0.251| |4|Numerous.ai|表格|41|-0.087| |5|SheetGod|表格|31|0.033| |6|GPTExcel|表格|25|-0.364| |7|酷表 ChatExcel|表格|18|-0.159| |8|GPT Workspace|表格|17|-0.213| |9|OpenAI in Spreadsheet|表格|12|-0.314| |10|Ajelix AI Excel Tools|表格|10|-0.145|

Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:AI for everyone吴恩达

监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

问:关于Excel的AI有哪些?

[title]问:关于Excel的AI有哪些?关于Excel的AI功能,目前有几种不同的工具和插件可以增强Excel的数据处理和分析能力,以下是一些可用的AI工具:1.Excel Labs:这是一个Excel插件,它新增了生成式AI功能,基于OpenAI技术,允许用户直接在Excel中利用AI进行数据分析和决策支持。2.Microsoft 365 Copilot:微软推出的AI工具,整合了Word、Excel、PowerPoint、Outlook、Teams等办公软件,通过聊天的形式,用户可以告知Copilot他们的需求,如数据分析或格式创建,Copilot将自动完成这些任务。3.Formula Bot:Formula Bot提供了数据分析聊天机器人和公式生成器两大功能,用户可以通过自然语言交互式地进行数据分析和生成Excel公式。4.Numerous AI:这是一款支持Excel和Google Sheets的AI插件,除了公式生成外,还可以根据提示生成相关文本内容、执行情感分析、语言翻译等任务。这些工具通过AI技术提升了Excel的数据处理能力,使得用户可以更加高效地进行数据分析和决策。随着技术的不断发展,未来可能会有更多AI功能被集成到Excel中,进一步提高工作效率和数据处理的智能化水平。内容由AI大模型生成,请仔细甄别。

表格 Top10

|Will's GenAI产品数据表格_排行|Will's GenAI产品数据表格_产品名|Will's GenAI产品数据表格_分类aiwatch.ai|Will's GenAI产品数据表格_6月访问量(万Visit)|相对5月变化|<br>|-|-|-|-|-|<br>|1|Highcharts|表格|235|0.389|<br>|2|Fillout.com|表格|186|-0.147|<br>|3|Coefficient|表格|46|-0.251|<br>|4|Numerous.ai|表格|41|-0.087|<br>|5|SheetGod|表格|31|0.033|<br>|6|GPTExcel|表格|25|-0.364|<br>|7|酷表ChatExcel|表格|18|-0.159|<br>|8|GPT Workspace|表格|17|-0.213|<br>|9|OpenAI in Spreadsheet|表格|12|-0.314|<br>|10|Ajelix AI Excel Tools|表格|10|-0.145|

Others are asking
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-26
AI infra是什么意思?
AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。 例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。 在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。
2025-03-26
AI证书
以下是关于 AI 证书的相关信息: 新手学习 AI 并获取证书的途径: 首先,了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,包括主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 根据兴趣选择特定模块深入学习,掌握提示词技巧。 理论学习后进行实践,尝试使用各种产品做出作品,分享实践成果。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人。 相关学习资源: 云端问道:https://developer.aliyun.com/topic/techworkshop?spm=a2c6h.29649919.J_3425856640.1.45d87102rfvft7 云起实践平台:https://developer.aliyun.com/adc/?spm=a2c6h.28938832.0.0.5ca5448a0xO1Q9 人工智能认证证书: (免费) 视觉开放平台:https://vision.aliyun.com/ MQ 老师是知乎的 AI 讲师,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,并在教育行业有丰富经验和实践探索。
2025-03-26
给我推荐一个写论文的ai
以下是为您推荐的用于写论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您是医学课题需要修改意见,以下工具可供选择: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:可提取文档结构化数据,生成文章概要,包含多个分析板块。 3. ChatGPT:强大的自然语言处理模型,能提供修改意见。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-26
我想在未来从事ai事业,现在该如何学习ai,
如果您想在未来从事 AI 事业,以下是一些学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-26
使用AI写论文研究背景的指令
以下是关于使用 AI 写论文研究背景的相关信息: 利用 AI 技术辅助写论文研究背景可以参考以下步骤和建议: 1. 确定研究主题:明确您的研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎(如 Semantic Scholar)和文献管理软件(如 Zotero)来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成研究背景部分的大纲,包括相关领域的现状、存在的问题、研究的意义等。 5. 撰写研究背景:利用 AI 工具(如 Grammarly、Quillbot)来帮助撰写研究背景部分,确保内容的准确性和完整性。但需注意,AI 工具只是辅助,不能完全替代您的专业判断和创造性思维。 在论文写作领域,有以下一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些 AI 工具时,要结合自身写作风格和需求,选择最合适的辅助工具,并保持批判性思维,确保研究的质量和学术诚信。
2025-03-26
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
ai数据处理
以下是关于 AI 数据处理的相关内容: 数据采集: AIGC 服务的创建离不开大量数据的收集,用于训练 AI 模型以提高其功能性和准确性。数据来源主要包括提供者自身持有的数据集、已合法公开的各类数据、通过网络爬虫等形式抓取的数据、通过用户交互获取的数据以及其他相关方提供的数据。《生成式人工智能服务管理暂行办法》对数据采集有明确规定,要求使用具有合法来源的数据和基础模型,涉及知识产权和个人信息的要遵守相关规定,同时要采取有效措施提高训练数据质量,并符合相关法律法规。 数据处理: 《生成式人工智能服务管理暂行办法》对 AIGC 服务提供者训练数据的处理活动进行了规范,要求使用具有合法来源的数据和基础模型,不得侵害他人知识产权,应取得个人信息所有者同意,采取有效措施提高训练数据质量,增强其真实性、准确性、客观性、多样性,并符合法律法规。 数据相关风险与挑战: 1. 在数据采集过程中,采取网络爬虫等技术收集数据和直接收集合法公开数据可能存在法律风险。 2. AI 的决策能力取决于输入数据的质量与多样性,数据中的偏见可能导致 AI 输出结果放大偏见甚至造成认知扭曲。例如,在招聘系统中,AI 可能因训练数据中的历史性别歧视问题更倾向于选取某一性别的候选人。企业在使用 AI 时必须对输入的数据保持警觉。
2025-03-09
数据处理
数据处理的相关知识如下: 根据《数据安全法》第三条第二款的规定,数据处理指的是“包括数据的收集、存储、使用、加工、传输、提供、公开等”。但在某些情况下,数据处理相对狭义,仅指向数据收集后的存储、使用、加工、公开等行为,不包括数据的收集,以及数据的传输、提供等流转行为。 数据处理是 AIGC 服务的核心环节之一,受到《数据安全法》《个人信息保护法》《网络安全法》等法律法规的规制。AIGC 服务提供者在该环节存在大量法定义务,常见行政法风险包括:开展数据处理活动未依照法律、法规的规定,建立健全全流程数据安全管理制度;未组织开展数据安全教育培训;未采取相应的技术措施和其他必要措施保障数据安全;利用互联网等信息网络开展数据处理活动,未在网络安全等级保护等。 《数据安全法》第一条指出,制定本法是为了规范数据处理活动,保障数据安全,促进数据开发利用,保护个人、组织的合法权益,维护国家主权、安全和发展利益。第二条规定在中华人民共和国境内开展数据处理活动及其安全监管适用本法,在境外开展数据处理活动损害我国相关权益的依法追究法律责任。第三条对数据、数据处理、数据安全进行了定义。此外,还对数据安全工作的决策和协调机构、各地区和部门的职责、相关主管部门和机关的监管职责、个人和组织与数据有关的权益等方面做出了规定。 在 GDPR 通用数据保护条例中,对揭示种族或民族出身,政治观点、宗教或哲学信仰,工会成员等个人数据的处理有禁止规定,但在符合特定情形时不适用,如数据主体明确同意、为实现特定目的必要、保护切身利益必要等。
2025-02-18
AI能对医院医用耗材出入库数据做怎样的数据处理,方便耗材管理人员对相关数据进行分析
AI 在医院医用耗材出入库数据处理方面可以发挥以下作用,以方便耗材管理人员进行数据分析: 1. 预测需求:通过分析历史出入库数据、医院科室使用情况、季节变化等因素,预测未来某段时间内的耗材需求量,优化库存管理策略,降低成本。 2. 库存优化:实时监控库存水平,及时发现库存过高或过低的情况,提醒管理人员进行调整。 3. 数据分类与整合:对大量的出入库数据进行分类和整合,使其更易于分析和理解。 4. 异常检测:识别出入库数据中的异常情况,如突然的大量领用或长时间未领用等,及时发现潜在问题。 5. 成本分析:计算不同种类、不同批次耗材的采购成本和使用成本,为成本控制提供依据。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-22
免费的可以进行excel数据处理的AI工具
以下是一些免费的可以进行 Excel 数据处理的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术新增了生成式 AI 功能,允许用户在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户可通过聊天形式告知需求,让 Copilot 自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,让用户能更高效地进行数据分析和决策。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-20
扣子工作流中能不用代码实现简单的数据处理吗
在扣子工作流中,是可以不用代码实现简单的数据处理的。例如,通过一些插件和大模型节点可以完成部分数据处理任务。 在生成有趣的《图文短句》的工作流中,包括多个步骤,如通过大模型生成标题、简介、文案等,并进行归纳总结和传递给图像流等。 在一泽 Eze 的教程中,提到在 Coze 上搭建工作流框架时,左侧“选择节点”模块中实际用到的有插件、大模型和代码。插件可提供一系列能力工具,大模型用于实现各项文本内容的生成,代码支持编写简单的 Python、JS 脚本对数据进行处理。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。但对于一些简单的数据处理,不使用代码,依靠插件和大模型也有实现的可能。
2024-09-30
飞书多维表格里的字段捷径怎么关联deepseek
飞书中将飞书多维表格里的字段捷径与 DeepSeek 关联的相关内容如下: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。涉及工具包括 Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。大体路径为:通过 Coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 Coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 做一个专属的好文推荐网站(DeepSeek R1 + 飞书多维表格)时,新建带有 AI 能力的飞书多维表格,逐一添加字段,使用“DeepSeek R1”时需要关联火山方舟的账号信息,并勾选相关选项。 在 Coze 应用 + 多维表格的高速数据分析中,使用 Coze、飞书多维表格、自定义 AI 字段捷径(Agent)来实现数据的高效抓取与批量 AI 化处理。Coze 定义智能体,发布到飞书多维表格字段捷径,多维表格中使用和配置自定义的 AI 字段捷径,Coze 应用采用交互式界面将数据导入到飞书多维表格,并驱动多维表格自动运行,通过多维表格仪表盘对数据进行可视化。目的是让大家了解如何最高效率使用 AI,并将方案泛化到实际工作中。
2025-03-25
多维表格自动生成视频
以下是关于多维表格自动生成视频的详细介绍: 基于其他博主开源的视频生成工作流进行功能优化,实现了视频的全自动创建。 先看效果: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 具体步骤: 1. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点为飞书多维表格,记得智能体提示词的 4 个变量,发布时会自动出现,控件选择“字段选择器”,填写上架信息(为快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 2. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流生成视频。 进行表单分享,实现填写表单自动创建文案短视频的效果。 3. 自动化推送:点击多维表格右上角的“自动化”,创建想要的自动化流程。 办公提效神器方面,还可用指令和 AI 生成视频插件,批量生成宣传视频。最后创建一列字段,从字段捷径 AI 中心中选择智谱 AI 生成视频,插件配置简单,直接选择视频指令作为文本描述即可批量生成。视频生成需时间,生成后可直接点击播放查看效果,如有抽象可重试或手动调整指令。
2025-03-23
dify使用飞书多维表格
以下是关于输入观点一键生成文案短视频以及飞书多维表格使用的相关内容: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,现写教程供参考。 先看效果: 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 Coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 Coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 智能体发布到飞书多维表格: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体则通过卡片回复,直接返回视频、可查看。绑定卡片数据可自己研究,不明白可留言。 2. 发布时选择需要的发布渠道,重点讲飞书多维表格。记得智能体提示词的 4 个变量,写了那 4 个变量,发布时这里会自动出现。填写上架信息(为快速审核,选择仅自己可用),确认发布等待审核。审核通过后,即可在多维表格中使用。 多维表格的字段捷径使用: 1. 创建飞书多维表格,添加相关字段。配置如下图,即可使用字段捷径功能,使用自己创建的 Coze 智能体。选择“自动更新”,输入前边的 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 2. 表单分享,实现文章最初的效果“填写表单,自动创建文案短视频”。 自动化推送: 点击多维表格右上角的“自动化”,创建想要的自动化流程。 此外,还有关于线下活动 SOP 的使用案例: 完全用飞书的各种功能组合完成,场地来自大家支持。 1. 活动宣传:用飞书文档制作活动宣传页面。 2. 活动报名:用飞书的多维表格完成及数据统计。 3. 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 4. 活动记录。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘。
2025-03-20
deepseek在多维表格中的应用
以下是关于 DeepSeek 在多维表格中的应用相关内容: 相关链接: 具体步骤: 创建带有 AI 能力的飞书多维表格,包括设置“金句输出”“概要内容提炼”等字段,并通过选择公式获取相应结果,如选择“金句提炼.输出结果”等。输入第一个链接,后续字段会自动生成,从而完成 AI 数据库的设置。 DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示应用。 音系学和与大模型互动的分享:包括音系学研究、通过与大模型多轮对话取队名等。 Deepseek 文档分享:在 3 群和 4 群分享了相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-03-19
如何使用AI在网络搜索信息,并将信息填入表格内呢?
使用 AI 在网络搜索信息并填入表格内,您可以参考以下几种方法: 1. 利用 AI 与权威网站结合获取关键数据,并辅助提取结构化表格数据或编写抓取程序。例如,针对如何用 AI 撰写专业区域经济报告,信息收集时可这样操作。同时,针对报告需求将内容拆分,避免 AI 单次处理任务过长。数据处理时,借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。分析与撰写时,通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但要注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 使用 Perplexity 进行搜索。Perplexity 的 Pro 搜索会将复杂问题拆分成不同关键词,进行多次搜索后整合结果,为用户提供全面、精准的答案。用户提问一次,Perplexity 会自动分多次搜索并把答案合并整理呈现,还会提供信息来源以便进一步查证。 3. 对于调研市场上主流的开源搜索引擎技术架构这类任务,可采用多智能体 AI 搜索引擎方案: 第一步,根据用户任务,使用搜索工具如 API WebSearchPro 补充更多信息,参考相关文档。 第二步,使用大模型如 GLM40520 把用户问题拆分成若干子搜索任务,并转换为 JSON 格式,参考相应 API 文档和 JSON 工具。 第三步,用具备联网搜索和自主分析能力的 AI 搜索智能体完成子任务,参考智能体 API 的调用方式。 第四步,智能体能调用各种插件生成思维导图等,根据工作需要选择,参考智能体 API 的调用方式。
2025-03-18
自动转换信息为表格
以下是关于自动转换信息为表格的相关内容: Andrej Karpathy 亲授:大语言模型入门 在讨论 LLM 的未来部分提到,使用 ChatGPT 收集有关规模人工智能及其创始轮次的信息,并整理成表格。ChatGPT 不是直接作为语言模型回答问题,而是使用工具,如浏览器进行搜索,将信息组织成表格,包括 A、B、C、D 和 E 系列,有日期、筹集的金额以及该系列中的隐含估值,并提供引用链接,同时会标注无法找到的信息。 50 个 ChatGPT 指令,提升工作效率 其中包括将文本转成 CSV 表格的相关提示:“从下面粘贴的列表中,创建一个包含”
2025-03-15