Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

财报摘要整理的ai

Answer

以下是关于财报摘要整理的 AI 相关信息:

目前,文本生成在多个领域广泛应用,如媒体广告、教育和法律等。AIGC 能根据给定主题或关键词自动生成新闻报道、文章摘要、广告文案等文本内容。

在医疗领域,AI 技术协助医生分析大量医疗数据,包括病历、影像资料等,有助于制定更精准的诊断方案和治疗计划,提高医疗质量和效率。在金融领域,证券 AI 智能投研可生成研报、进行财务数据查询、盈利预测和提供投资组合建议;银行智能风控通过分析客户信用历史和行为特征等数据,挖掘风险因素,实现信贷风险、反欺诈、反洗钱等行为预警。

从产品形态上,业内普遍认为 AI 应用将沿着 AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(智能体)四个重要方向演进。

此外,智能摘要功能能够辅助快速筛选信息,实现信息降噪。近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,在不断颠覆传统的搜索引擎。

Content generated by AI large model, please carefully verify (powered by aily)

References

2024钉钉AI助理白皮书-人人都是创造者-钉钉&财商学院-38页.pdf

目前,文本生成已广泛应用于媒体广告、教育和法律。例如AIGC可以根据给定的主题或关键词,自动生成新闻报道、文章摘要、广告文案等文本内容。图像、视频和3D模型生成,则在营销、影视创作和游戏等领域得到应用。只需要一张照片、一段语音或一个视频,生成式AI就能创造出一个能开口说话、做出表情的数字人。通过大模型整合大量数据、信息和知识,从而为用户提供准确的研究分析和辅助决策,主要应用于制造、教育、金融、医疗和军事等领域。在医疗领域,AI技术可以协助医生分析大量的医疗数据,包括病历、影像资料等,从而快速识别出特定病灶或潜在的健康风险,有助于医生制定更精准的诊断方案和治疗计划,提高医疗质量和效率。在金融领域,证券AI智能投研可以生成研报、财务数据查询、盈利预测、投资组合建议;银行智能风控通过对客户的信用历史、行为特征等数据进行分析,挖掘风险因素,实现信贷风险、反欺诈、反洗钱等行为预警。从产品形态上,业内普遍认为AI应用将沿着AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(智能体)四个重要的方向演进。(参考《QuestMobile生成式AI及AIGC应用洞察》报告)

Inhai: Agentic Workflow:AI 重塑了我的工作流

“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。近期出现的各类AI搜索引擎,类似perplexity.ai、metaso、360搜索、ThinkAny等等,都是在不断颠覆传统的搜索引擎。辅助高效的处理信息阅读完一份10万字的PDF研究报告需要多久?这份报告主要讲了什么内容?有没有我要关注的点?智能摘要是目前我用的超顺手的一个功能,能够辅助我快速的筛选信息,什么值得看,什么不容错过,真正的实现信息的降噪。信息表达更简便放在以往很难想象,如果要实现下面这俩张图,可能会设计一系列的思考、草稿、理清逻辑等等流程。

Others are asking
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
国内有什么免费好用的文字转图片AI吗?
目前国内免费好用的文字转图片 AI 工具包括: 1. DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多相关工具。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
小红书与AI的结合
以下是关于小红书与 AI 结合的相关内容: 汉青老师曾分享,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内可能因新鲜感获流量红利,长期人们仍在意高质量内容。我们掌握了多种先进工具,但应慢下节奏感受真实世界和身边普通人。目前还没想好具体如何与 AI 结合。 有朋友的朋友圈题材提到:同一条街道上,年轻女孩在街上,孤独老人在围墙里;一张照片传递了两种稳固关系和一种爱意;有人认为电商快递外卖的优势是劳动力,图中女孩的状态令人垂头丧气。 还有作者将 AI 与大理石这一古典媒介结合,认为当历史厚重与科技轻盈相遇会激发艺术可能。 此外,2024 年 11 月 30 日举办的 Show Me 扣子 AI 挑战赛大消费行业专场活动中,介绍了扣子平台最新公测的各项能力。活动旨在推动 AI 技术在大消费领域的应用与创新,为内容生产者寻求更多变现可能。获奖作品如“买买买!产品买点提炼神器强化版”专注于市场营销领域,能提炼卖点、生成营销文案等。
2025-02-17
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
怎样用Coze用来分析财报并生成图表?
使用 Coze 分析财报并生成图表的实现过程如下: 1. 工作流中的数据解析:用户上传 Excel 后,在工作流中获取 Excel 链接,通过插件下载并读取其中的数据。 最初尝试将解析出的 Excel 数据以单元格形式存到 bot 数据库,利用大模型根据单元格数据和用户提问生成答案,但大模型计算能力差,常出现计算错误。 改为将 Excel 转换为数据表,使用大模型把用户问题转换为 SQL,准确率很高。 由于 Coze 不能动态创建表,自行编写服务,在动作流中调用,根据 Excel 的 URL 动态创建表并插入数据,将表名存到 Coze 数据库,以便后续根据表名动态执行 SQL 获取数据。 2. 报表生成: 根据数据库表字段信息,使用大模型为用户生成 3 个推荐报表,包含标题、描述、查询 SQL,限制每次查询数据为 100 条。 拿到 SQL 后,使用插件动态执行查询数据,再根据标题和数据使用大模型转换为绘制 Echarts 图表的参数。 绘制图表,官方插件生成的图表较模糊,自行编写插件提高清晰度,并将图片放大三倍。 3. 其他相关操作: 查看大图时,把多张图片合成一张,图像流不支持合成图片,自行编写插件实现。 图表生成成功后,将图表链接存到数据库,为查看报表做准备。 大模型生成的 SQL 有时出错,可将报错信息和 SQL 传给大模型修复后重新执行,大模型生成的非标准 JSON 也可用此方案修复。 查看报表时,从数据库中查询图表链接,调用合并图片插件将几张图表合并成一张大图。 删除图表根据用户输入的标题从数据库中删除。 添加图表与前面解析 Excel 数据生成报表流程类似,用户输入标题后生成查询 SQL,后续步骤相同。
2024-11-20
通过阅读财报数据,提取其中的数据生成表格,怎么实现?
通过阅读财报数据并提取信息生成表格,可以通过以下几个步骤实现: 1. 获取财报文件:首先,你需要获取公司的财报文件,这些文件通常以PDF、Word文档或Excel电子表格的形式提供。 2. 选择合适的工具:根据财报文件的格式,选择合适的工具来读取文件内容。例如,对于PDF和Word文档,可以使用Python的`PyPDF2`、`pythondocx`库;对于Excel文件,可以使用`pandas`库。 3. 文本提取:使用所选工具提取文档中的文本内容。例如,使用`PyPDF2`库可以提取PDF中的文本。 4. 数据清洗:提取的文本可能包含格式错误、多余的空格或特殊字符等,需要进行数据清洗,以便于分析。 5. 信息识别与提取:识别文本中的关键财务数据,如收入、利润、成本等。这可能需要使用正则表达式来匹配特定的数字格式和相关的财务术语。 6. 数据结构化:将提取的数据结构化,通常意味着将数据放入一个表格中,如CSV格式或数据库表中。可以使用`pandas`库来创建DataFrame对象,然后导出为Excel或CSV文件。 7. 生成表格:使用表格生成工具或软件,如Microsoft Excel、Google Sheets或`pandas`库,将结构化的数据生成表格。 8. 数据验证:验证提取的数据是否准确无误,必要时进行手动校正。 9. 自动化:对于重复性的任务,可以编写脚本或程序自动化上述过程。 下面是一个简单的Python示例,演示如何使用`pandas`和`pythondocx`库从Word文档中提取财报数据并生成表格: ```python import pandas as pd from docx import Document 加载Word文档 doc = Document 创建空的DataFrame df = pd.DataFrame 遍历文档中的每个段落 for para in doc.paragraphs: 使用正则表达式匹配财务数据 match = re.search 假设我们正在查找收入数据 if match: 提取数字并添加到DataFrame revenue = int df = df.append 导出DataFrame到Excel df.to_excel ``` 请注意,这只是一个简化的示例,实际的财报数据提取可能要复杂得多,需要根据具体的财报格式和所需数据进行调整。此外,对于非结构化数据(如PDF或扫描的文档),可能需要使用OCR(光学字符识别)技术来提取文本。
2024-05-23
如何用Kimi有效的分析上市公司财报
如果您想使用 Kimi 有效地分析上市公司财报,可以尝试以下步骤: 1. 明确分析目标:首先,您需要明确您的分析目标。例如,您可能想了解公司的财务健康状况、盈利能力、偿债能力等方面的信息。 2. 收集财报数据:收集您想要分析的公司的财报数据。您可以从公司的官方网站、证券交易所、财经新闻网站等渠道获取财报数据。 3. 导入财报数据:将收集到的财报数据导入到 Kimi 中。您可以使用 Kimi 的数据导入功能,将财报数据转换为 Kimi 可以识别的格式。 4. 使用 Kimi 进行分析:使用 Kimi 的分析功能,对财报数据进行分析。例如,您可以使用 Kimi 的财务比率分析功能,计算公司的各种财务比率,如流动比率、速动比率、资产负债率等。 5. 解读分析结果:解读 Kimi 的分析结果,了解公司的财务状况。您可以使用 Kimi 的图表功能,将分析结果以图表的形式展示出来,以便更好地理解分析结果。 6. 综合分析:除了对财报数据进行分析外,您还可以结合公司的其他信息,如公司的业务模式、市场竞争情况、行业发展趋势等,进行综合分析。 7. 得出结论:根据分析结果,得出结论。您可以使用 Kimi 的报告功能,将分析结果和结论生成报告,以便更好地与他人分享您的分析结果。 需要注意的是,Kimi 是一个人工智能,它的分析结果仅供参考。在进行财报分析时,您还需要结合自己的专业知识和经验,进行综合判断。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
2024-04-19
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
生成文章摘要及框架的提示词
以下是关于生成文章摘要及框架的提示词相关内容: 办公通用场景: 总结助手:请帮我总结以下文章,将以下文本总结为 100 个单词,使其易于阅读和理解。摘要应简明扼要,并抓住文本的要点。避免使用复杂的句子结构或技术术语。 周报生成器:根据日常工作内容,提取要点并适当扩充,以生成周报。 相关链接: Chain of Density:为给定文章生成越来越精简且信息丰富的摘要,重复两个步骤 5 次。步骤 1 找出 1 3 项先前摘要中遗漏的信息实体“informative entity”,步骤 2 生成新的更紧凑的摘要,涵盖先前所有信息实体及缺失实体。回复格式为 JSON,包含“Missing_Entities”和“Denser_Summary”两个键值。 利用 AI 打造爆款公众号文章:关键在于提供清晰且具指导性的提示词,好的提示词能让 AI 更准确理解需求并生成符合预期的内容。可从基础提示词进阶到更详细、具创意的提示词,为 AI 设定文章语气、风格和重点,最终产出内容可能需微调以符合预期和公众号风格。
2024-12-05
你会写论文摘要
以下是关于论文写作和摘要相关的综合信息: 1. 利用连锁密度法撰写摘要的方法:向您索取文章后,通过重复两个步骤共五次来撰写逐渐简洁、重点突出的文章摘要。步骤包括从文章中找出 1 3 个关键要素并编写新的更精炼的摘要,要遵循相关原则,最终以 JSON 格式(包含“Missing_Entities”和“Denser_Summary”两个键值)回答。 2. 提示工程中与论文写作相关的策略和技巧:使用分隔符(如三重引号、XML 标签、章节标题等)清晰区分输入的不同部分,例如总结、翻译等文本内容。 3. 论文写作的 AI 产品: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持数据分析,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 处理论文格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。使用时要结合自身需求选择合适工具,并仔细甄别生成内容。
2024-11-20
推荐一个免费的ai写摘要软件
以下为您推荐一些免费的 AI 写摘要软件: Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx) Claude 2(https://claude.ai/) 此外,还有一些在其他写作方面表现出色的 AI 工具: 简历写作: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,包括摘要、工作经验和教育等专业部分,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,能自动化创建简历的各个方面。 Huntr 的 AI 简历构建器:提供免费简历模板,以及 AI 生成的总结、技能、成就生成器和工作匹配。更多 AI 简历产品可查看:https://www.waytoagi.com/category/79 论文写作: 文献管理和搜索:Zotero 可自动提取文献信息;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可重写和摘要,优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭,确保原创性。 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。
2024-11-20
用50个字概括AI如何会议记录&摘要
AI 进行会议记录和摘要可涵盖会议主题、人员、议题等要素,借助相关工具和工作流,如飞书妙记、Kimichat 等,按流程生成和完善。
2024-11-13
用20个字概括AI会议记录&摘要
AI 会议记录与摘要涵盖多场景多领域内容
2024-11-13
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
能够模仿产品经理,把我的需求描述整理成格式化的PRD的工具有什么
以下是一些能够模仿产品经理,把您的需求描述整理成格式化 PRD 的工具: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com)
2025-02-09
给我一个关于ai应用提示词的整理文档
以下是为您整理的关于 AI 应用提示词的相关内容: Apple Intelligence 中的提示词: 在最新开发者测试版中包含生成式 AI 功能,其模型中的指示会在对聊天机器人说话前默认出现。 如“有用的邮件助理”AI 机器人会被告知如何根据邮件内容提问,指示包括“将答案限制在 50 个单词以内,不产生或编造虚假信息”等。 生成 Apple Photos 中“回忆”视频的指示集存在一些限制,如“不要写宗教、政治等负面内容”。 AI 应用于工作场景制作单词卡片的提示词: 核心目的包括生成符合要求的单词卡内容,并填入 Excel 文件中。 生成过程中先给出基本示例,再根据不同生成内容限定规则。 测试结果显示可同时解析多个单词,大体格式符合要求,但存在部分效果偏差和设定改变,可通过复制粘贴等方式处理。 批量产出时需上传压缩文件并完成套版操作。 关于 AI 幻觉的提示词相关思考: 网上找到的总结公众号的提示词存在输出与实际不符的情况。 总结类文章,AI 可能未读完整个文章,大语言模型可能未真去搜索网页,更像是开发商的“狡猾”,而非“AI 幻觉”。
2025-02-07
文本整理
以下是关于文本整理的相关内容: 总结类应用: 大型语言模型在概括文本方面的应用令人兴奋,可在 Chat GPT 网络界面中完成,也可通过代码实现。包括对产品评论的摘要任务,还介绍了文字总结的不同类型,如 4.1 文字总结、4.2 针对某种信息总结、4.3 尝试“提取”而不是“总结”、4.4 针对多项信息总结。 创建并使用知识库: 创建知识库并上传文本内容的上传方式及操作步骤: Notion:在文本格式页签下选择 Notion,依次进行授权、登录选择页面、选择数据、设置内容分段方式(自动分段与清洗或自定义)等操作,最后完成内容上传和分片。 自定义:在文本格式页签下选择自定义,输入单元名称,创建分段并输入内容,设置分段规则,最后保存。 本地文档:在文本格式页签下选择本地文档,拖拽或选择要上传的文档(支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件),选择内容分段方式(自动分段与清洗或自定义),完成上传和分片。
2025-02-07
请给我整理一套怎么才能学习和使用AI的方法,列举几个例子是怎么能快速的理解ai的发展历史及原理
以下是一套学习和使用 AI 的方法,以及帮助您快速理解 AI 发展历史及原理的途径: 一、学习 AI 的方法 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 二、快速理解 AI 发展历史及原理的途径 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-07
AI自动整理新媒体传播数据
很抱歉,目前知识库中没有关于“AI 自动整理新媒体传播数据”的相关内容。但一般来说,实现 AI 自动整理新媒体传播数据可以通过以下步骤: 1. 数据采集:利用网络爬虫等技术收集新媒体平台上的相关数据,如文章阅读量、点赞数、评论数等。 2. 数据清洗:对采集到的数据进行清理和预处理,去除无效或错误的数据。 3. 特征提取:从清洗后的数据中提取有价值的特征,例如用户行为特征、内容特征等。 4. 选择合适的算法:根据数据特点和需求,选择适合的机器学习或深度学习算法,如分类算法、聚类算法等。 5. 模型训练:使用提取的特征和选择的算法进行模型训练。 6. 模型评估:通过测试数据对训练好的模型进行评估,确保其准确性和可靠性。 7. 部署应用:将训练好的模型部署到实际系统中,实现自动整理新媒体传播数据的功能。 需要注意的是,具体的实现方式会因数据特点、业务需求和技术条件的不同而有所差异。
2025-02-06