直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

财报摘要整理的ai

回答

以下是关于财报摘要整理的 AI 相关信息:

目前,文本生成在多个领域广泛应用,如媒体广告、教育和法律等。AIGC 能根据给定主题或关键词自动生成新闻报道、文章摘要、广告文案等文本内容。

在医疗领域,AI 技术协助医生分析大量医疗数据,包括病历、影像资料等,有助于制定更精准的诊断方案和治疗计划,提高医疗质量和效率。在金融领域,证券 AI 智能投研可生成研报、进行财务数据查询、盈利预测和提供投资组合建议;银行智能风控通过分析客户信用历史和行为特征等数据,挖掘风险因素,实现信贷风险、反欺诈、反洗钱等行为预警。

从产品形态上,业内普遍认为 AI 应用将沿着 AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(智能体)四个重要方向演进。

此外,智能摘要功能能够辅助快速筛选信息,实现信息降噪。近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,在不断颠覆传统的搜索引擎。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

2024钉钉AI助理白皮书-人人都是创造者-钉钉&财商学院-38页.pdf

目前,文本生成已广泛应用于媒体广告、教育和法律。例如AIGC可以根据给定的主题或关键词,自动生成新闻报道、文章摘要、广告文案等文本内容。图像、视频和3D模型生成,则在营销、影视创作和游戏等领域得到应用。只需要一张照片、一段语音或一个视频,生成式AI就能创造出一个能开口说话、做出表情的数字人。通过大模型整合大量数据、信息和知识,从而为用户提供准确的研究分析和辅助决策,主要应用于制造、教育、金融、医疗和军事等领域。在医疗领域,AI技术可以协助医生分析大量的医疗数据,包括病历、影像资料等,从而快速识别出特定病灶或潜在的健康风险,有助于医生制定更精准的诊断方案和治疗计划,提高医疗质量和效率。在金融领域,证券AI智能投研可以生成研报、财务数据查询、盈利预测、投资组合建议;银行智能风控通过对客户的信用历史、行为特征等数据进行分析,挖掘风险因素,实现信贷风险、反欺诈、反洗钱等行为预警。从产品形态上,业内普遍认为AI应用将沿着AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(智能体)四个重要的方向演进。(参考《QuestMobile生成式AI及AIGC应用洞察》报告)

Inhai: Agentic Workflow:AI 重塑了我的工作流

“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。近期出现的各类AI搜索引擎,类似perplexity.ai、metaso、360搜索、ThinkAny等等,都是在不断颠覆传统的搜索引擎。辅助高效的处理信息阅读完一份10万字的PDF研究报告需要多久?这份报告主要讲了什么内容?有没有我要关注的点?智能摘要是目前我用的超顺手的一个功能,能够辅助我快速的筛选信息,什么值得看,什么不容错过,真正的实现信息的降噪。信息表达更简便放在以往很难想象,如果要实现下面这俩张图,可能会设计一系列的思考、草稿、理清逻辑等等流程。

其他人在问
入门学习AI
以下是为新手提供的 AI 入门学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 推荐新手使用 Kimi 智能助手入门学习和体验 AI,其不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios:
2024-11-21
Langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链按顺序执行以完成特定任务。 具有模型抽象、提示模板和值、链、代理等功能。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互并提供内存功能。 LangChain 与 RAG(检索增强生成)的关系: 框架与技术:LangChain 作为框架,提供实现 RAG 必需的工具和组件,RAG 技术可在其框架内实施利用。 模块化实现:允许开发者通过模块化组件构建 RAG 应用程序,如使用检索器和生成模型创建完整的 RAG 流程。 简化开发:通过提供现成的链和提示模板简化 RAG 应用开发过程。 提高性能:利用 LangChain 实现 RAG 可创建更高效、准确的应用,尤其在需大量外部信息辅助决策的场景。 应用构建:通过丰富的 API 和组件库支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。 开发 LangChain 应用构建 RAG 应用时,LangChain 提供以下组件: 数据加载器:从数据源加载数据并转换为文档对象,包含页面内容和元数据。 文本分割器:将文档对象分割成多个较小文档对象,方便后续检索和生成。 文本嵌入器:将文本转换为高维向量,用于衡量文本相似度以实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象,常见实现是向量存储器检索器。 聊天模型:基于大模型实现文本生成功能。 使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)
2024-11-21
Aigc
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等都属于 AIGC 的应用。 AIGC 常见的产品项目和媒介众多。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了我们熟悉的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像,是一种扩散模型的变体,叫做“潜在扩散模型”。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版。源代码库为 github.com/StabilityAI/stablediffusion 。 AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域有着广泛的应用,包括文字生成、图像生成、视频生成等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。AIGC 由人工智能生成内容,优势在于快速、大规模生成内容,适用于自动化新闻、广告创作等;UGC 由用户生成内容,优势在于内容丰富多样,适用于社交媒体、社区论坛等;PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等。 AIGC 在 CRM 领域有着广阔的应用前景,主要包括个性化营销内容创作、客户服务对话系统、产品推荐引擎、CRM 数据分析报告生成、智能翻译和本地化、虚拟数字人和营销视频内容生成、客户反馈分析等方面。不过在应用过程中,仍需解决算法偏差、版权和知识产权等伦理法律问题。
2024-11-21
Ai是什么
AI 是一门令人兴奋的科学,它是某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 从技术角度看,AI 研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初计算机用于按照明确的程序进行数字运算,而对于像根据照片判断一个人的年龄这类无法明确编程的任务,正是 AI 所感兴趣的。 AI 已经渗透到各行各业,有着广泛的应用场景: 医疗保健方面,包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务领域,涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务中,有产品推荐、搜索和个性化、动态定价、聊天机器人等应用。 制造业里,涉及预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输行业也有相关应用。
2024-11-21
目前最方便的用来编程的免费AI有哪些?不能只会生成代码,还要像cursor一样有多种便利的编程功能
目前较为方便且具有多种便利编程功能的免费 AI 编程工具包括: 1. Cursor:是一个现代化的集成开发环境(IDE),具有 AI 辅助编码、代码自动补全、实时代码分析、多语言支持、集成终端、Git 集成、自定义主题、跨平台、性能优化和实时协作等特点。可通过 https://www.cursor.com/ 链接进入主页下载。 2. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 3. 通义灵码:阿里巴巴团队推出,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 4. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 5. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 6. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库。个人使用免费。 7. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 8. Codeium:一个由 AI 驱动的编程助手工具,提供代码建议、重构提示和代码解释,提高编程效率和准确性。 此外,还有一些其他工具,如 Wing Python IDE Pro,专为 Python 编程设计,集成多种功能,但年度许可证起价 179 美元/月;Smol Developer 是开源的 AI 开发助手,能根据产品需求生成完整的代码库,遵循 MIT 许可证。 每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。更多辅助编程 AI 产品,还可以查看 https://www.waytoagi.com/category/65 。
2024-11-21
我想学习ai做副业赚钱,应该怎么做?
学习 AI 做副业赚钱可以参考以下步骤: 1. 基础学习: 了解 AI 基本概念,阅读「」部分,熟悉术语和基础概念,包括人工智能的主要分支及它们之间的联系,浏览入门文章了解其历史、应用和发展趋势。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并争取获得证书。 2. 深入学习: 根据兴趣选择特定模块深入学习,比如图像、音乐、视频等领域。 掌握提示词技巧,因其上手容易且实用。 3. 实践尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 4. 体验产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 需要注意的是,学了 AI 有可能赚钱,但不保证每个人都能赚到钱。人工智能领域有很多高薪工作,如数据科学家、机器学习工程师等,学会 AI 技术可增加在这些岗位就业及职业发展的可能性。然而,能否赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素。仅仅学会基础知识可能不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-11-21
怎样用Coze用来分析财报并生成图表?
使用 Coze 分析财报并生成图表的实现过程如下: 1. 工作流中的数据解析:用户上传 Excel 后,在工作流中获取 Excel 链接,通过插件下载并读取其中的数据。 最初尝试将解析出的 Excel 数据以单元格形式存到 bot 数据库,利用大模型根据单元格数据和用户提问生成答案,但大模型计算能力差,常出现计算错误。 改为将 Excel 转换为数据表,使用大模型把用户问题转换为 SQL,准确率很高。 由于 Coze 不能动态创建表,自行编写服务,在动作流中调用,根据 Excel 的 URL 动态创建表并插入数据,将表名存到 Coze 数据库,以便后续根据表名动态执行 SQL 获取数据。 2. 报表生成: 根据数据库表字段信息,使用大模型为用户生成 3 个推荐报表,包含标题、描述、查询 SQL,限制每次查询数据为 100 条。 拿到 SQL 后,使用插件动态执行查询数据,再根据标题和数据使用大模型转换为绘制 Echarts 图表的参数。 绘制图表,官方插件生成的图表较模糊,自行编写插件提高清晰度,并将图片放大三倍。 3. 其他相关操作: 查看大图时,把多张图片合成一张,图像流不支持合成图片,自行编写插件实现。 图表生成成功后,将图表链接存到数据库,为查看报表做准备。 大模型生成的 SQL 有时出错,可将报错信息和 SQL 传给大模型修复后重新执行,大模型生成的非标准 JSON 也可用此方案修复。 查看报表时,从数据库中查询图表链接,调用合并图片插件将几张图表合并成一张大图。 删除图表根据用户输入的标题从数据库中删除。 添加图表与前面解析 Excel 数据生成报表流程类似,用户输入标题后生成查询 SQL,后续步骤相同。
2024-11-20
通过阅读财报数据,提取其中的数据生成表格,怎么实现?
通过阅读财报数据并提取信息生成表格,可以通过以下几个步骤实现: 1. 获取财报文件:首先,你需要获取公司的财报文件,这些文件通常以PDF、Word文档或Excel电子表格的形式提供。 2. 选择合适的工具:根据财报文件的格式,选择合适的工具来读取文件内容。例如,对于PDF和Word文档,可以使用Python的`PyPDF2`、`pythondocx`库;对于Excel文件,可以使用`pandas`库。 3. 文本提取:使用所选工具提取文档中的文本内容。例如,使用`PyPDF2`库可以提取PDF中的文本。 4. 数据清洗:提取的文本可能包含格式错误、多余的空格或特殊字符等,需要进行数据清洗,以便于分析。 5. 信息识别与提取:识别文本中的关键财务数据,如收入、利润、成本等。这可能需要使用正则表达式来匹配特定的数字格式和相关的财务术语。 6. 数据结构化:将提取的数据结构化,通常意味着将数据放入一个表格中,如CSV格式或数据库表中。可以使用`pandas`库来创建DataFrame对象,然后导出为Excel或CSV文件。 7. 生成表格:使用表格生成工具或软件,如Microsoft Excel、Google Sheets或`pandas`库,将结构化的数据生成表格。 8. 数据验证:验证提取的数据是否准确无误,必要时进行手动校正。 9. 自动化:对于重复性的任务,可以编写脚本或程序自动化上述过程。 下面是一个简单的Python示例,演示如何使用`pandas`和`pythondocx`库从Word文档中提取财报数据并生成表格: ```python import pandas as pd from docx import Document 加载Word文档 doc = Document 创建空的DataFrame df = pd.DataFrame 遍历文档中的每个段落 for para in doc.paragraphs: 使用正则表达式匹配财务数据 match = re.search 假设我们正在查找收入数据 if match: 提取数字并添加到DataFrame revenue = int df = df.append 导出DataFrame到Excel df.to_excel ``` 请注意,这只是一个简化的示例,实际的财报数据提取可能要复杂得多,需要根据具体的财报格式和所需数据进行调整。此外,对于非结构化数据(如PDF或扫描的文档),可能需要使用OCR(光学字符识别)技术来提取文本。
2024-05-23
如何用Kimi有效的分析上市公司财报
如果您想使用 Kimi 有效地分析上市公司财报,可以尝试以下步骤: 1. 明确分析目标:首先,您需要明确您的分析目标。例如,您可能想了解公司的财务健康状况、盈利能力、偿债能力等方面的信息。 2. 收集财报数据:收集您想要分析的公司的财报数据。您可以从公司的官方网站、证券交易所、财经新闻网站等渠道获取财报数据。 3. 导入财报数据:将收集到的财报数据导入到 Kimi 中。您可以使用 Kimi 的数据导入功能,将财报数据转换为 Kimi 可以识别的格式。 4. 使用 Kimi 进行分析:使用 Kimi 的分析功能,对财报数据进行分析。例如,您可以使用 Kimi 的财务比率分析功能,计算公司的各种财务比率,如流动比率、速动比率、资产负债率等。 5. 解读分析结果:解读 Kimi 的分析结果,了解公司的财务状况。您可以使用 Kimi 的图表功能,将分析结果以图表的形式展示出来,以便更好地理解分析结果。 6. 综合分析:除了对财报数据进行分析外,您还可以结合公司的其他信息,如公司的业务模式、市场竞争情况、行业发展趋势等,进行综合分析。 7. 得出结论:根据分析结果,得出结论。您可以使用 Kimi 的报告功能,将分析结果和结论生成报告,以便更好地与他人分享您的分析结果。 需要注意的是,Kimi 是一个人工智能,它的分析结果仅供参考。在进行财报分析时,您还需要结合自己的专业知识和经验,进行综合判断。 (以上答案可能无法准确回答问题,建议在引用内容里进一步确认)
2024-04-19
你会写论文摘要
以下是关于论文写作和摘要相关的综合信息: 1. 利用连锁密度法撰写摘要的方法:向您索取文章后,通过重复两个步骤共五次来撰写逐渐简洁、重点突出的文章摘要。步骤包括从文章中找出 1 3 个关键要素并编写新的更精炼的摘要,要遵循相关原则,最终以 JSON 格式(包含“Missing_Entities”和“Denser_Summary”两个键值)回答。 2. 提示工程中与论文写作相关的策略和技巧:使用分隔符(如三重引号、XML 标签、章节标题等)清晰区分输入的不同部分,例如总结、翻译等文本内容。 3. 论文写作的 AI 产品: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持数据分析,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 处理论文格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。使用时要结合自身需求选择合适工具,并仔细甄别生成内容。
2024-11-20
推荐一个免费的ai写摘要软件
以下为您推荐一些免费的 AI 写摘要软件: Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx) Claude 2(https://claude.ai/) 此外,还有一些在其他写作方面表现出色的 AI 工具: 简历写作: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,包括摘要、工作经验和教育等专业部分,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,能自动化创建简历的各个方面。 Huntr 的 AI 简历构建器:提供免费简历模板,以及 AI 生成的总结、技能、成就生成器和工作匹配。更多 AI 简历产品可查看:https://www.waytoagi.com/category/79 论文写作: 文献管理和搜索:Zotero 可自动提取文献信息;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可重写和摘要,优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭,确保原创性。 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。
2024-11-20
用50个字概括AI如何会议记录&摘要
AI 进行会议记录和摘要可涵盖会议主题、人员、议题等要素,借助相关工具和工作流,如飞书妙记、Kimichat 等,按流程生成和完善。
2024-11-13
用20个字概括AI会议记录&摘要
AI 会议记录与摘要涵盖多场景多领域内容
2024-11-13
论文全文生成摘要
以下是关于您问题的回答: “Chain of Density”(CoD)是一种通过建立一系列相互关联的紧密提示来指导 AI 生成具体和连续输出的方法。它由美国哥伦比亚大学、麻省理工和 Salesforce 公司的研究人员共同发表。具体来说,是使用 GPT4 生成初始的稀疏摘要,然后通过迭代加入缺失的重要内容,在不增加摘要长度的情况下,添加更多实体信息,让摘要更具细节和丰富性、可读性及抽象性。这些提示相互链接,形成一个“密度链”,更有针对性地引导 AI 达到预期的输出。论文以“如何从文章提炼萃取出最合适的摘要”为重点,发布后有网友实测将 CoD 提示法用于翻译,翻译质量有飞跃提升。 在论文写作方面,有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化内容。 3. 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-12
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题,有什么ai工具,可以帮助我
目前在市场上,还没有能够完全替代家教老师团队进行 1v1 辅导,包括根据学生当天学习课程出题、定时监督并整理错题等全方位功能的单一 AI 工具。但您可以考虑结合使用以下几种 AI 相关的技术和工具来部分实现您的需求: 1. 智能学习管理系统:这类系统可以根据学生的学习进度和表现生成一些练习题,但可能无法完全针对当天学习的课程精准出题。 2. 自然语言处理工具:帮助分析学生的学习情况和问题,为后续的辅导提供一定的参考。 需要注意的是,AI 工具在教育中的应用仍处于不断发展和完善的阶段,不能完全替代人类教师的情感支持、个性化引导和灵活应变能力。
2024-11-18
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题
目前的情况来看,使用 AI 代替家教老师团队进行 1v1 辅导,包括出题、监督和整理错题等工作,虽然具有一定的可行性,但也面临一些挑战。 从出题方面,AI 可以根据学生当天学习的课程内容,利用其强大的数据分析和算法能力生成相关题目。但需要确保题目质量和针对性,能够准确覆盖重点知识点,并适应学生的学习水平。 在监督方面,AI 可以通过设定时间提醒等方式,督促学生按时完成任务。然而,它可能无法像人类教师那样敏锐地察觉学生的情绪和学习状态变化,及时给予鼓励和支持。 对于整理错题,AI 能够快速分类和分析错题,但在解释错题原因和提供个性化的学习建议上,可能不如人类教师那么深入和灵活。 总之,虽然 AI 可以在一定程度上辅助这些工作,但完全替代家教老师团队可能还不太成熟,或许可以将 AI 与人类教师相结合,以达到更好的辅导效果。
2024-11-18
最强的文档整理AI软件
以下是一些强大的文档整理 AI 软件: 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档常用 Grammarly 和 PandaDoc 等。 对于 PPT 制作: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:由美图秀秀团队推出,输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 内容由 AI 大模型生成,请仔细甄别。
2024-11-17
有没有帮研究生查看课题,整理论文的ai
在研究生查看课题和整理论文方面,AI 技术提供了多种辅助工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化,协助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 对于医学课题需要 AI 给出修改意见,您可以考虑以下专业工具: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含多个分析板块。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 使用这些工具时,要结合自身写作风格和需求,选择最适合的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-16
能不能发一个深度整理会议纪要的提示词
以下是一些深度整理会议纪要的提示词示例: 作为 CEO 助理秘书,专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。 角色:CEO 助理秘书 作者:李继刚 版本:0.1 LLM:GPT4 插件:无 描述:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。 注意事项:请务必准确和全面地记录会议内容,使每个参会人员都能明确理解会议的决定和行动计划。在整理会议纪要过程中,需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。 链接地址: 将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 注意:这个是 API 里的 system prompt 。您的任务是审查提供的会议记录,并创建一个简明扼要的总结,捕捉重要信息,重点关注会议期间分配给特定个人或部门的关键要点和行动项目。使用清晰专业的语言,并使用适当的格式(如标题、小标题和项目符号)以逻辑的方式组织总结。确保总结易于理解,并提供会议内容的全面但简洁的概述,特别注重清楚地指出每个行动项目的负责人。
2024-11-15
我想从互联网上搜集某些类型的论文,并且自动整理成我想要的格式,有什么基于大模型的agent或者软件推荐吗
以下是一些基于大模型的 agent 或者软件,可帮助您从互联网上搜集某些类型的论文并自动整理成您想要的格式: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,在 AI 文章排版方面,以下工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09