直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

最简单易懂的transformer图示

回答

为了方便理解,我会尽量使用非技术术语进行解释,并配上一些图表。

Transformer 是 Google Research 于 2017 年提出的一种神经网络架构,它已经被证明了在自然语言处理 (NLP) 任务中的有效性,并被广泛应用于机器翻译、文本摘要、问答等领域。

Transformer 的基本原理是通过 注意力机制 (Attention Mechanism) 来学习词与词之间的依赖关系,从而更好地理解句子的语义。

以下是一张简化的 Transformer 架构图:

1_MWUMFJHihfIKisxJmQAr3w.webp

图中主要包含以下几个部分:

  • 编码器 (Encoder): 编码器由多个相同的编码器层组成,每个编码器层又由两个子层组成:
    • 自注意力层 (Self-Attention Layer): 自注意力层负责学习词与词之间的依赖关系。
    • 前馈神经网络层 (Feed Forward Network Layer): 前馈神经网络层负责对每个词进行非线性变换。
  • 解码器 (Decoder): 解码器由多个相同的解码器层组成,每个解码器层又由三个子层组成:
    • 自注意力层 (Self-Attention Layer): 解码器的自注意力层负责学习词与词之间的依赖关系,以及词与编码器输出之间的依赖关系。
    • 编码器-解码器注意力层 (Encoder-Decoder Attention Layer): 编码器-解码器注意力层负责将编码器输出的信息传递给解码器。
    • 前馈神经网络层 (Feed Forward Network Layer): 解码器的前馈神经网络层负责对每个词进行非线性变换。
  • 位置编码 (Positional Encoding): 由于 Transformer 模型没有使用循环神经网络 (RNN),因此需要显式地将位置信息编码到输入序列中。

Transformer 的工作流程如下:

  1. 将输入序列转换为词嵌入表示。
  2. 编码器对输入序列进行编码,并输出编码器输出序列。
  3. 解码器以自注意力机制为基础,根据编码器输出序列和之前生成的输出词,预测下一个词。
  4. 重复步骤 3,直到生成完整的输出序列。

Transformer 的注意力机制是其核心思想,它使 Transformer 能够捕获长距离依赖关系,从而更好地理解句子的语义。

以下是一张简化的注意力机制示意图:

image (4).png

图中主要包含以下几个部分:

  • 查询 (Query): 查询代表要计算注意力的词。
  • 键 (Key): 键代表所有候选词。
  • 值 (Value): 值代表所有候选词的语义信息。
  • 注意力分数 (Attention Score): 注意力分数代表查询词与每个候选词之间的相关程度。
  • 加权值 (Weighted Value): 加权值代表每个候选词对查询词的贡献程度。

注意力机制的计算过程如下:

  1. 对查询、键和值进行缩放变换。
  2. 计算查询与每个键的点积。
  3. 对点积进行 softmax 运算,得到注意力分数。
  4. 将注意力分数与值相乘,得到加权值。
  5. 将所有加权值求和,得到最终的输出。

Transformer 模型的出现是 NLP 领域的一个重大突破,它使 NLP 任务的性能得到了大幅提升。Transformer 模型及其衍生模型已经被广泛应用于各种 NLP 任务,并取得了 state-of-the-art 的结果。

希望以上解释能够帮助您理解 Transformer 的基本原理。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
什么是Transformers
Transformer 是一种注意力模型,也被称为变形金刚模型。它源于 Google 团队在 2017 年发布的一篇名为《Attention Is All You Need》的论文。 语言建模多年来不断发展,在 2015 年注意力机制兴起,Transformers 模型就是基于此。 Transformer 具有以下特点: 基于注意力机制,能更好地捕捉序列中的长程依赖关系。 是一种使用注意力机制的编码器解码器模型,可以利用多元化的优势,同时处理大量数据。 其架构由编码器和解码器组成,编码器对输入序列进行编码并传递给解码器,解码器解码相关任务的表示。 尽管 Transformers 之前的模型能将单词表示为向量,但这些向量不包含上下文,而 Transformer 能解决此问题。 生成式人工智能的力量来自于使用了 Transformers,其核心思想是“自注意力机制”,能让模型在处理一个词或短语时,同时考虑到与它相关的其他词或短语的信息,从而更好地理解语言的上下文,更准确地进行翻译或生成文本。但 Transformers 也可能产生幻觉,即模型生成无意义或语法错误的单词或短语。 通过海量的训练学习,大型的神经网络模型(如 Transformer )中存储了大量知识,可通过文字生成展现。像 ChatGPT 这样基于 Transformer 的模型在闲聊中能表现出更多世界知识和一定推理能力,能更好地理解人类语言含义和上下文,生成更自然流畅的语言表达。Character.ai 也在研发自己类似于 ChatGPT 的预训练大型语言模型。
2024-10-30
transformer原理详解
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制(SelfAttention Mechanism):能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到固定向量,帮助模型学习位置信息的表示。 3. 多头注意力机制(MultiHead Attention):通过引入该机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间引入残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络(Positionwise FeedForward Networks):在每个注意力子层之后,包含位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立计算,提高了模型的并行性和计算效率。 此外,用一个简单的例子解释其工作流程:假设要将英文句子“I am a student”翻译成中文。 1. 输入嵌入(Input Embeddings):首先将每个单词映射为一个向量,即单词嵌入。 2. 位置编码(Positional Encodings):给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。
2024-10-18
transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有捕获序列顺序的结构,需给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制(MultiHead Attention)捕捉单词间的依赖关系,以及前馈神经网络(FeedForward NN)对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成单词“我”“是”等的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 具有诸多优势,例如可以非常有效地并行化,这意味着只要有合适的硬件,就能训练出非常大的模型。像 GPT3 这样令人印象深刻的文本生成模型,其写作能力几乎与人类相当,就是在 45TB 的文本数据上训练而成的。Transformer 使神经网络能够更高效地理解和生成语言,通过并行分析散文块,找出值得关注的元素,极大地优化了生成连贯文本以响应提示的过程。最终,同样的技术还可以生成图像甚至视频。
2024-10-18
transformer原理
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入了位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到的固定向量,帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。 内容由 AI 大模型生成,请仔细甄别。类似问题:Transformer 是什么?
2024-10-14
帮我解释一下transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“ I ”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有能捕获序列顺序的结构,如递归或卷积,所以给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention),用于捕捉单词间的依赖关系;二是前馈神经网络(FeedForward NN),对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器同样由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成“我”“是”等单词的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。
2024-10-12
transformer原理
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,层归一化可以加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。
2024-08-09
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
帮我提交一份最适合企业办公管理人员的中文AI提示词教程,浅显易懂,生动有趣,不超过60分钟的授课时间内容材料
很抱歉,目前没有适合企业办公管理人员的中文 AI 提示词教程相关内容。但我可以为您提供一个大致的框架来创建这样的教程: 一、引言 介绍 AI 提示词的重要性和在企业办公中的应用场景。 二、基础概念 1. 解释什么是 AI 提示词。 2. 举例说明简单的提示词示例。 三、提示词的构建原则 1. 清晰明确 避免模糊和歧义。 具体描述需求。 2. 完整性 包含必要的信息。 不遗漏关键细节。 四、不同场景下的提示词应用 1. 数据分析与报告 如何获取准确的数据分析结果。 生成清晰的报告提示词技巧。 2. 项目管理 安排任务和跟踪进度的提示词。 协调团队的有效提示词。 3. 客户服务 快速解决客户问题的提示词。 提供满意答复的提示词要点。 五、实践与练习 让学员自己尝试构建提示词,并进行分享和讨论。 六、总结 回顾重点内容,鼓励学员在实际工作中应用。 您可以根据以上框架,结合具体的案例和生动的语言,来丰富和完善这份教程,使其满足您的需求。
2024-09-09
帮我提交一份最适合企业办公管理人员的AI提示词教程,浅显易懂,生动有趣,不超过60分钟的授课时间内容材料
以下是为企业办公管理人员准备的一份 AI 提示词教程,预计授课时间不超过 60 分钟,内容浅显易懂、生动有趣: 一、什么是 prompt(提示词) 为什么 prompt 又被称之为咒语,而使用 AI 的人被称之为魔法师呢?通过本部分的学习,您将明白其中的道理,并能迅速入门 prompt 的使用,达到一般公司设计岗所需的 AI 绘图水准。 建议:打开任意一款 SD 产品分屏对照使用。 二、人机协作 在短短 45 分钟的课堂中,您将了解到人机协作的重要性。比如通过兔龟的例子,您会明白在绘图提示词中,要清晰表达、给出具体描述。为了教垫图技巧,还会给出让兔龟站起来却失败的例子。 三、与 AI 对话迭代 不管是和 AI 脑洞机一起设计新生物,还是写歌词,您需要在和 AI 对话的过程中把自己的偏好告诉它。通过几次迭代,您将学会如何更好地与 AI 交流。 四、要有自己的判断 AI 可能会胡说八道,因此人类不能无脑依赖 AI。面对 AI 给的答案要多思考“它说得对吗”,多参考相关信息,避免被带偏。例如改良版荔枝瓢虫的故事,能让您记住人类得有自己的判断。 如果您在学习过程中有任何觉得不够清晰的地方,请在评论区留言,或者添加微信 designurlife1st 直接沟通(记得备注来意:ai 绘图交流)。
2024-09-09
大语言模型领域, 如何理解“退火”概念。 请用通俗易懂的方式举例说明
在大语言模型领域,“退火”是一个相对复杂的概念。通俗地说,您可以把它想象成铁匠打铁时的一个过程。铁匠在打造铁器时,不会一开始就用猛火高温一直烧,而是会逐渐升高温度,然后再慢慢降低温度,让金属的结构更加稳定和优化。 在大语言模型中,“退火”的作用类似于此。它可能是在模型的训练过程中,对某些参数或者条件进行逐步的调整和优化,以达到更好的性能和效果。但目前提供的知识库内容中,没有直接关于大语言模型中“退火”概念的详细且通俗易懂的解释和具体例子。
2024-08-13
请用简单易懂的语言讲一下Fine-tuning
Finetuning,也叫做微调,是一种迁移学习技术,常用于深度学习中。这种方法的基本思路是:首先,我们有一个预训练的模型,这个模型已经在大量的数据上训练过,已经学会了一些基本的模式和结构。然后,我们再在特定的任务数据上继续训练这个模型,使其适应新的任务,这就是所谓的"finetuning"。
2024-04-23
请用简单易懂的语言讲一下pre-training
预训练(pretraining)的目标是让模型学习一种语言模型,用于预测文本序列中的下一个单词。训练数据通常是互联网上的大量文本。模型从这些文本中学习词汇、语法、事实以及某种程度的推理能力。这个阶段结束后,模型可以生成一些有意义且语法正确的文本,但可能无法理解具体任务的需求。
2024-04-23
有没有RAG 基本架构的中文图示
以下是关于 RAG 基本架构的介绍: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。 4. LLM 从检索到的上下文中合成答复返回给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。
2024-10-17
什么工具/模型/API 可以根据宠物照片生成数字宠物 可以有简单的活动。
以下是一个可以根据宠物照片生成数字宠物并具有简单活动的工具/模型/API: 出门问问 Mobvoi 的照片数字人工作流及语音合成(TTS)API。 出门问问是一家以生成式 AI 和语音交互为核心的人工智能公司,为全球多个国家提供面向创作者的 AIGC 工具、AI 政企服务,以及 AI 智能硬件。致力于打造国际领先的通用大模型,通过 AI 技术、产品及商业化三位一体发展,致力成为全球 AI CoPilot 的引领者。 在 ComfyUI 全球领导力峰会上,特意搭建了数字人 workflow(照片数字人驱动),仅需上传一张照片,输入一段文字或者上传一段音频,就可以生成短视频让“照片开口说话”。本次活动特意提供了免费 api 额度及操作指南给大家进行体验。以下是一些不同风格的照片驱动效果展示:
2024-11-16
简单、便捷的python编程IDE
以下是一些简单、便捷的 Python 编程 IDE: 1. Wing Python IDE Pro:由 Wingware 开发,专为 Python 编程设计,集成了代码编辑、导航和调试功能,具备智能自动补全、代码重构、多选功能和代码片段工具,使编程更轻松高效。价格:年度许可证起价 179 美元/月。 2. Smol Developer:开源的 AI 开发助手,可根据产品需求生成完整的代码库,具有简单、安全、易于理解的代码结构,同时具备高度灵活性和定制性。价格:开源项目,遵循 MIT 许可证。 3. Cody:Sourcegraph 的 AI 工具,能理解整个代码库,解答问题并编写代码,还能详细解释代码,定位特定组件,并提出修复建议。可通过 VS Code 扩展直接使用,个人使用免费。 配置 Python 运行环境的方法如下: 简单版: 下载 Python 和 PyCharm。 Python 下载地址:https://www.python.org/ PyCharm 下载地址:https://www.jetbrains.com/pycharm/download/ 然后双击 exe 文件安装即可。 详细版: 1. 访问 Python 官网:https://www.python.org/ 2. 下载 Python 安装包 3. 安装 Python:打开 window 控制台,输入 python,能进入控制台就说明安装成功了。 4. 集成开发环境: PyCharm 是由 JetBrains 打造的一款 Python IDE,支持 macOS、Windows、Linux 系统。功能包括调试、语法高亮、Project 管理、代码跳转、智能提示、自动完成、单元测试、版本控制等。 下载 PyCharm: Professional(专业版,收费):完整的功能,可试用 30 天。 Community(社区版,免费):阉割版的专业版。 安装 PyCharm:下载完成后,双击安装即可。 使用 PyCharm:首先在桌面上创建一个文件夹 test,并创建一个目录 test.py,双击桌面 PyCharm 图标,打开刚才创建的 test 目录即可。 安装 PyCharm 的补充说明: PyCharm 是一个专门用于 Python 开发的集成开发环境(IDE),能更方便地编写和运行 Python 代码。 点击该网址:https://www.jetbrains.com/pycharm/download/ ,点击完后注意下拉,选择下面这个下载,这个是 Community Edition(社区版),该版本是免费的。如果是开头映入眼帘的下载按钮是收费版,只能体验 30 天。社区版自己玩的话够用了。如果没法外网下载,可使用以下网盘链接: 夸克网盘:Pycharm 和 Cursor(主要是 Pycharm,版本稳定,Cursor 有条件可以自己下) 链接:https://pan.quark.cn/s/c5df4670858c 百度网盘:pycharmcommunity2024.2.3.exe 链接:https://pan.baidu.com/s/1jFMxBQD0r41eU6f5BGQg?pwd=43h2 提取码:43h2
2024-11-13
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05
好用简单的算法有哪些?
以下为您介绍一种在自制 2048 小游戏中应用的简单算法: 作者吵爷前阵子写了 BP 算法入门,因公式多遭批评,近期学习 Pygame 制作 55 的 2048 小游戏。偶然产生让 AI 玩的想法,简单与 GPT 交流后,带入一些简单算法使 AI 能运行游戏,虽性能不如人,但能直观感受算法对模型性能的提升,对初学者比看数学公式更友好。目前仅在基础逻辑做优化,后续会继续改进。未用到高级算法,但此案例可作为简单算法应用的参考。
2024-10-31
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。并且得到的结果必须与原文所表达的内容不出现差错,翻译结果读起来流畅自然
很抱歉,知识库中的内容没有直接针对您如何翻译日漫以获得更自然流畅且准确结果的相关指导。但一般来说,要实现这样的翻译效果,您可以从以下几个方面考虑: 1. 深入理解日漫的文化背景、角色性格和情节发展,以便更好地把握原文的“意”。 2. 注重上下文的连贯和逻辑,不仅仅是逐句翻译,而是从整体上把握语义。 3. 避免过于拘泥于原文的句式和词汇,灵活运用目标语言的表达方式。 4. 多参考优秀的日漫翻译作品,学习他人的翻译技巧和风格。 5. 对于一些特定的文化元素或术语,要进行适当的解释或转换,以确保目标读者能够理解。
2024-10-27