Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

transformer是通往AGI的必经之路吗?什么是世界模型,当前有哪些进展

Answer

Transformer 并非通往 AGI 的必经之路。在已知的 token space 中,Transformer 符合一些条件,但在更通用的场景中不太符合。AI 本质包含一堆 scaling law,一个值得被 scale up 的架构是基础,且架构要支持不断加入更多数据。当前在数据方面,如限定问题的数据生成有进展,但通用问题还没有完全的解法。

世界模型方面,目前的研究正在以指数级别的速度增长。对于语言这种有结构、有规则的指令系统,其逻辑受指向描述变化,如早期语言模型建模中用到的 RNN、LSTM 及当前 LLM 的 Transformer 模型结构,都是对语言序列性所体现逻辑结构的适配。同时也在思考是否存在其他形式的符号化表征及相应的建模结构,以及对于非碳基生物语言的使用情况等。未来通往 AGI 的道路并非简单,需要探寻 RL 与 LLM 的本质普遍性。

Content generated by AI large model, please carefully verify (powered by aily)

References

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

“AI本质就是一堆scaling law..今天能看到最好的模型是10的25到26次方FLOPs这种规模。这个数量级接下来肯定还会持续增长,所以我认为算力是个必要条件,因为机器学习或者AI研究了七八十年,唯一work的东西其实是scaling Law,就是放大这几种生产要素。你需要一个同时满足scalability和generality这两点的架构,但今天其实很多架构已经不满足这两条了。transformer在已知的token space符合这两条,但放大到一个更通用的场景,也不太符合。数据也是一个生产要素,包括整个世界的数字化,和来自用户的数据。现在“吃”的是base model的scaling law,未来可能会去“吃”用户这个数据源的scaling law。因为其实alignment也有scaling law,它肯定是可以被解决的,只要你能找到对的数据。AI本质就是一堆scaling law。一个值得被scale up的架构是基础,这个架构首先得支持不断加入更多数据,然后数据才会真的成为瓶颈。我们现在说的数据瓶颈,从文本模态上,2024年就会遇到,但多模态数据的引入进来会把这个问题推迟1-2年。如果视频和多模态的卡点解决不了,那文本的数据瓶颈就会很关键。这点上其实我们也有些进展——如果限定了问题,比如数学或者写代码,数据是相对好生成的。通用的问题现在还没有完全的解法,但是存在一些方向可以去探索。统计模型没有什么问题。当next token prediction足够好的时候,它能够平衡创造性和事实性。

入门经典必读

作者:[Derrick Harris](https://a16z.com/author/derrick-harris/),[Matt Bornstein](https://a16z.com/author/matt-bornstein/)和[Guido Appenzeller](https://a16z.com/author/guido-appenzeller/)原文地址:https://a16z.com/2023/05/25/ai-canon/译者:通往AGI之路后半部分:[目录:a16z推荐进阶经典](https://ywh1bkansf.feishu.cn/wiki/EXX1w3QyFiBz8fknLFYce7gvnug)人工智能的研究正在以指数级别的速度增长。对于AI专家来说,跟上所有新发布的内容已经非常困难,对于初学者来说更是难上加难。因此,在这篇文章中,我们分享了一份我们信赖的、用于更深入了解现代AI的精选资源列表。我们称之为“AI典藏”,因为这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

「逻辑性」:语言是一种有结构、有规则的指令系统。语言的逻辑受语言的指向描述而变化。如:我是一个中国人/我像一个中国人,1+1=2/1*1=1,this is an apple/this is a car等。在上述语言的「指向性」中,能力体会语言这种单一的词、字符号化可以指向真实世界的某一个概念,然而在这个世界中,事物亦是可以组织或者事物间是有着逻辑上的关联和结构的,因此除了抽象概念的一对一映射指向,语言作为一种序列组织结构,在序列的这种形式化表征上,可以体现出复杂的逻辑性或数学结构,实现对真是物理世界的进一步抽象表征。比如在早期语言模型建模中经常用到过的RNN、LSTM,当前LLM的Transformer模型结构,正式对这种语言序列性所体现出的逻辑机构进行的适配。当然图结构作为一种非欧符号化表征,GCN模型也是对知识图谱符号的一种建模结构适配。这里有兴趣的读者可以再延申一下思考:世界上是否存在除了自然语言、变成语言、数学语言等其它形式的符号化表征的存在,如果存在,那么用于机器学习建模的模型结构应该是什么样子的呢?同时,对于非碳基生物来讲,语言是否像能够对人类使用一样,进行得那么顺畅和友好?「这里同样再栓个扣子,不知大家是否还记得在上篇论述AMIE的过程中,提到了语言或其它符号的分布或构象所衍生出的探索语义空间的更深一层的表征潜力,关联LLM的pre-traning到super alignment,再到杨植麟所提到的LLM在进行pre-traning到alignment过程中的scaling law本质,我们似乎能够体会到未来通往AGI的道路并非如此简单,这也是本篇文章想要表达的核心观点之一,也是希望能够探寻RL与LLM的本质普遍性,试图

Others are asking
什么是AGI
AGI 即人工通用智能,通常被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。 例如,OpenAI 的相关计划中,Q2025(GPT8)将实现完全的 AGI,但因一些原因有所推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 在关于 AGI 实现后未来 20 年人类社会的变革的研究中,AGI 的出现被视为人类历史上具有转折意义的事件。 Sam Altman 认为,呈现人工通用智能特征的系统正浮现,人工通用智能通常指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,它是人类进步脚手架上的另一个工具。
2025-04-18
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。AGI 的出现被视为人类历史上具有转折意义的事件,当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,包括社会结构、价值观、权力格局、人类角色等多个方面。我们的使命应是确保 AGI 造福全人类,从某种意义上说,AGI 是人类进步脚手架上的另一个工具。
2025-04-15
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!
WayToAGI(通往AGI之路)是一个由热爱AI的专家和爱好者共同建设的开源AI知识库。它具有以下特点和优势: 1. 整合了各种AI资源,让大家能轻松学习AI知识,应用各类AI工具和实战案例。 2. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 3. 时刻追踪AI领域最新进展并更新,每次访问都有新收获。 4. 涵盖丰富的内容,包括AI视频、AI绘画、AI音乐、AI艺术、AI即兴戏剧、AI Agent共学等。 5. 为用户提供全面系统的AI学习路径,辅助思考,让学习过程少走弯路。 6. 自 2023 年 4 月 26 日诞生,在无推广情况下,一年已有超 70 万用户和超千万次访问量。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。访问“waytoagi.com”即可找到社群。
2025-04-12
身份是小学语文老师,如何自学waytoAGI
以下是为您整理的相关内容: 1. 10 月 9 日小作业中提到:熟悉 waytoagi 知识库,并找到 Prompt 提示词框架文章,给出两个提示词框架和生成结果。框架一是“CRISPE 框架”,处理小学六年级同学丢钱引发的同桌纠纷,给出三种解决方式,包括调查真相、教育双方,全班寻找失物、避免误解,引导调解与反思。生成结果为详细的解决步骤。同时提到人工智能时代的三个基石是数据、算法、算力,数据和算法可在开源数据库等找到,算力可在云计算平台如 AWS、Google Cloud、Microsoft Azure 找到。 2. 6 月 11 日 AI 秒学团队中,有人分享了搭建聊天功能工作流的经历,提到在实践中不断迭代、调整和优化。一位纯社科背景的高校老师感谢 way to AGI 带文科生进入 agent 的“坑”,并提到小团队给予的帮助。 3. 问卷中,刘翔宇表示自己是国内一线互联网 AI 产品经理,愿意共同维护 WaytoAGI 开源社区,学习目标是了解 Comfy 基础理论等多方面,所在城市为北京。
2025-04-12
什么是Transformer,它的工作流程是什么样
Transformer 是一种在自然语言处理中广泛应用的模型,其工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如,“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化则有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 位置编码方面,Transformer 通过一种称为位置编码的创新方法绕过了语序理解的障碍。其思路是将输入序列中的所有单词(如一个英语句子)在每个单词后面加上一个数字,表明它的顺序。从概念上讲,把理解语序的重担从神经网络的结构转移到数据本身。起初,在对 Transformer 进行任何数据训练之前,它并不知道如何解释这些位置编码。但是随着模型看到越来越多的句子和它们的编码,它学会了如何有效地使用它们。最初的作者使用正弦函数来进行位置编码,而不是简单的整数 1、2、3、4,但要点是相同的。将语序存储为数据,而不是靠网络结构,这样神经网络就更容易训练了。
2025-03-21
Transformer模型
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常基于正弦和余弦函数计算得到的固定向量,可帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 Transformer 模型主要由两大部分组成:编码器和解码器。每个部分都是由多个相同的层堆叠而成,每层包含了多头注意力机制和位置全连接前馈网络。 编码器可以理解为将自然语言转换成向量文本,以模型内的既有参数表示。这些参数包含了原始信息,同时也融合了序列内元素间的相互关系。例如,输入“我喜欢猫”,将自然语言转换成词嵌入向量:我>,经过自注意力机制,输出编码器输出一个序列的向量,表示对输入句子的理解。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,也就是把向量文本重新转化成自然语言。例如,目标生成中文句子“我喜欢猫”,初始输入为解码器接收一个开始符号,用,对应“猫”。这是一个简单的复现概念,当模型得到匹配度高的参数时,它就会一个词一个词地判断需要输出的语言文本。
2025-03-14
Transformer 架构
Transformer 架构主要由编码器(Encoder)和解码器(Decoder)两大部分组成。 编码器可以将自然语言转换成向量文本,其内部参数包含了原始信息以及序列内元素间的相互关系。例如,输入“我喜欢猫”,会将自然语言转换成词嵌入向量,如“我”对应,然后通过自注意力机制输出一个表示对输入句子理解的向量序列。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,将向量文本重新转化成自然语言。例如生成中文句子“我喜欢猫”,解码器接收开始符号,然后逐步根据编码器输出和已生成的词决定生成后续的词。 Transformer 是一种使用注意力机制的编码器解码器模型,其模型架构使得它可以利用多元化的优势,同时处理大量数据,有助于提高机器翻译等应用程序的性能。 此外,Transformer 架构能够并行处理大量数据吞吐,且满足 scaling law,在各个模态和技术栈具有优势,被 OpenAI 广泛使用。使用同样的架构可以复用模型的参数来引导不同技术栈的训练,以及使用一套 infra 框架训练不同的模型。
2025-03-14
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文,主要用于处理序列数据,包括热门的 NLP 任务,完全基于注意力机制,不使用传统的 RNN 或 CNN 计算架构。 其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如“ I ”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有捕获序列顺序的结构,需给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 模型用途广泛,可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 AlphaFold 2、GPT3、BERT、T5、Switch、Meena 等强大的自然语言处理(NLP)模型都建立在 Transformer 基础之上。如果想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定了解。
2025-03-13
Transformer是什么?
Transformer 是一种注意力模型,也被称为变形金刚模型。它源于 Google 团队在 2017 年发布的论文《Attention is All Your Needs》。 Transformer 是一种深度学习模型,核心思想是“Attention is all you need”。其主要用于处理序列数据,包括当下热门的自然语言处理(NLP)任务。与传统模型不同,Transformer 完全基于注意力机制,不依赖传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 基于 Transformer 的模型众多,例如最流行的 BERT,它是“来自 Transformer 的双向编码器表示”的缩写。BERT 经过在庞大文本语料库上的训练,已成为自然语言处理的通用模型,可用于文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户查询等一系列任务。 此外,Transformer 不仅在自然语言处理领域表现出色,还在自然语言处理之外的领域掀起浪潮,如作曲、根据文本描述生成图像以及预测蛋白质结构。像 ChatGPT 这样的模型在闲聊中也能展现出更多的世界知识和某种程度的推理能力,能够更好地理解人类语言的含义和上下文,并生成更自然流畅的语言表达。
2025-03-06
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
MCP是什么 ?通往AGI之路中有相关的学习资料吗?
MCP(模型上下文协议)是由 Anthropic 于 2024 年 11 月推出的一项创新标准。它旨在实现大语言模型与第三方数据源的无缝连接,通过支持内容存储库、业务工具和开发环境等多种外部服务,让 AI 模型获取更丰富的上下文信息,从而生成更加精准、相关的智能回答。 Lark 认为,用一句话概括,MCP 是一种通用的方式,向各类大语言模型提供数据源和工具。官网解释:MCP 是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式,可以将其想象成 AI 应用程序的 USBC 接口。 此外,还有文章介绍了如何通过 MCP 连接 Claude 3.7 与 Blender,实现一句话生成 3D 场景的功能。随着 MCP 的崛起,AI 不再是数据孤岛,未来的 AI 智能体将能自主完成更复杂的任务,开启创作的新纪元。
2025-03-25
网站“通往AGI之路”的建设意义是什么?
“通往 AGI 之路”网站具有以下建设意义: 1. 学习平台:是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 2. 资源丰富:由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 3. 实践促进:定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 4. 品牌形象:品牌 VI 融合独特设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建充满活力和前瞻性的品牌形象。 5. 连接作用:不仅是一个知识库,更是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 6. 影响力大:在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量,是很多 AI 爱好者知识的源头。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。
2025-03-24
请详细讲述一下这个网站《通往AGI之路》的学习方法?
《通往 AGI 之路》的学习方法如下: 1. 系统学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等高质量学习内容,并整理成学习笔记,在整理过程中与大家交流互动。 2. 社区共创学习:对于觉得系统学习枯燥的同学,可以等待社区共创内容,通过共创做小项目来反向推动学习。 3. 了解相关原理:学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 4. 探索应用:例如了解 Stable Diffusion 运作原理与 GPT 训练现状。 5. 针对特定软件:对于 AE 软件,可在 B 站找丰富的入门课程自学,也可从包图网下载工程文件学习。通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习,还可参考模板。 6. 名词解释:理解包括 AGI、AIGC、agent、prompt 等 AI 相关名词,可通过与 AI 对话或李继刚老师的课程来理解。 7. 信息获取:关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 8. 参与活动:参加如 AIPO、CONFIUI 生态大会等社区活动,每月还有切磋大会。 9. 阅读经典:阅读介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章,以及软件 2.0 时代相关内容。 10. 初学者推荐:对于初学者,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。同时,整理 open AI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-23
通往agi之路是一个怎样的团队
“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 它具有以下特点: 1. 目标是助力每一个怀揣 AI 梦想的人在探索知识的道路上“无弯路,全速前进”。 2. 这里既是知识的消费者,也是知识的创作者。 3. 拥有 200 多个微信群和 140 多个高校群。 4. 举办了 AIPO 等相关活动,活动遵循先共学再以赛代练的学习路径,邀请了 10 位 AI 界大佬分享经验。 5. 有赛博禅心主理人大聪明等人员的参与和支持,赛博禅心公众号有 5000 个 AI 项目详解,可为活动提供灵感。 6. 中科院翟教授曾开场致辞。 7. 提供了 v two agi.com 网站供注册进入知识库。 同时,“通往 AGI 之路”还有众多友情链接,涉及麦橘、orange、Web3 天空之城、Ragnar 瑞哥那、海辛、三思、云中江树、陈财猫、阿文等在 AI 领域的不同角色,如产品经理、艺术家、工程师等。
2025-03-22
给我一份通往AIGC的学习目录
以下是一份通往 AIGC 的学习目录: 1. AIGC 概述 1.1 GenAI、AIGC 的基本概念 GenAI 的定义、工作原理及应用 典型的 GenAI 产品 AIGC 的定义及创建方式 国内 AIGC 的监管框架 1.2 AIGC 的分类及应用 语言文本生成的模型和代表项目 图像生成的技术和代表项目 音视频生成的方法和代表项目 AIGC 在音乐生成、游戏开发和医疗保健等领域的应用 1.3 AIGC 应用可能引发的风险 内生风险,如算法的不可解释性和不可问责性,代码开源的安全和伦理担忧 数据隐私问题,如数据泄露、匿名化不足、未经授权的数据共享 知识产权风险,如作品侵权、不当竞争 相关法律和规定对 AIGC 的要求 AIGC 滥用可能导致的问题,如虚假信息传播、侵犯隐私 2. AI 赋能教学 从易到难的学习路径 了解 AI 工作原理 尝试各种 AI 工具 学会优化提示词 生成课程资源 解决教学场景 课上师生机共学 促学生正确使用 提升人机共创力 相关主题 AIGC 教育革命:技术原理与课堂实践 AI 从工具到助手赋能教师提升效率与能力 大语言模型的教学潜力:交流技巧与心得 AI 与教育场景融合拓展教学边界与创新场景 AI 与人类智能的共生放大学生思考力塑造深度学习能力 一线教师的 AI 需求与高效工具推荐 AI 赋能课堂的核心逻辑:从理论到应用 解码 AI 教学案例:创新与实践 教学主要负担分析,如备课压力、适应新课标
2025-03-17
通往GAI之路中AI提示词板块李继刚的提示词如何使用
李继刚的提示词使用方法如下: 从最佳实践中的收录内容开始学习,其结构化提示词能让模型给出更优质、完整的答案。 操作时可点开并复制相关提示词,将复制内容丢进大语言模型对话,会有不同效果。 近期提示词有升级,李继刚老师将提示词玩到新高度,cloud 等大语言模型可直接显示编译结果内容。 输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 李继刚老师会在 13 号讲创作思路。 从工程视角看,一个提示词就能用于写游戏,如现在的 AI 编程(如 CURSOR)能做出开源小游戏,可拿来使用、交流并研究内容、优化改造。
2025-03-09