Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用通俗易懂的动画描述人工智能工作原理

Answer

人工智能的工作原理可以通过以下动画来描述:

在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。

然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。

比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。

总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。

Content generated by AI large model, please carefully verify (powered by aily)

References

晨然:万字复盘我的AI作品《Devices》| 解析AI创作中的变与不变

本篇适合任何对AI创作感兴趣的人,我写的会比较通俗易懂,小白可以看懂。专业人士也可以获取一些创作思路灵感~《Devices》中呈现了色彩缤纷的电子设备的变换,每一帧视频截图都美极了。[heading2]可控与不可控的权衡[content]简单来说,工作流用一句话总结:使用Blender制作白模动画,导出深度图、线框图帧序列,使用ComfyUI进行风格迥异的渲染。我一直在思考一个问题:AI视频到底跟传统工作流制作视频的区别是什么?其实两者各有优缺点,并不是替代关系。AI内容速度碾压,接近零成本无限生成。AI极其不可控,很难可控构图、一致人物。AI画面粗糙,经不起细看。传统工作流(动画、电影)慢,极其可控,在制作之前即可预测内容。传统工作流成本高,需要规范流程由小到大制作。AI与传统工作流各有优劣,我觉得思考如何使用AI替代传统艺术工业,不如思考AI如何迸发新时代艺术创作流程。让AI做好AI擅长的内容,传统工作流做好传统工作流擅长的内容,两者结合,不谈替代。我想,我这不是拍过微电影又会AI嘛,为啥不结合一下呢?于是,就尝试了一下利用Blender的可控性和ComfyUI的随机性制作AI原生内容。传统工作流是在可控性中寻找创新的随机性,而AI工作流更多是在随机性中寻找可控性,那么最重要的问题变成了:如何平衡可控性与不可控性?这个思考会贯穿整个创作流程。ComfyUI节点编排工作流

谷歌Generating audio for video

We experimented with autoregressive and diffusion approaches to discover the most scalable AI architecture,and the diffusion-based approach for audio generation gave the most realistic and compelling results for synchronizing video and audio information.我们尝试了自回归和扩散方法,以发现最具可扩展性的人工智能架构,而基于扩散的音频生成方法在同步视频和音频信息方面取得了最真实、最令人信服的结果。Our V2A system starts by encoding video input into a compressed representation.Then,the diffusion model iteratively refines the audio from random noise.This process is guided by the visual input and natural language prompts given to generate synchronized,realistic audio that closely aligns with the prompt.Finally,the audio output is decoded,turned into an audio waveform and combined with the video data.我们的V2A系统首先将视频输入编码为压缩表示。然后,扩散模型从随机噪声中迭代改进音频。这一过程以视觉输入和自然语言提示为指导,生成与提示密切配合的同步逼真音频。最后,对音频输出进行解码,将其转化为音频波形,并与视频数据相结合。Diagram of our V2A system,taking video pixel and audio prompt input to generate an audio waveform synchronized to the underlying video.First,V2A encodes the video and audio prompt input and iteratively runs it through the diffusion model.Then it generates compressed audio,which is decoded into an audio waveform.我们的V2A系统示意图,该系统利用视频像素和音频提示输入生成与底层视频同步的音频波形。首先,V2A对视频和音频提示输入进行编码,并通过扩散模型反复运行。然后生成压缩音频,并解码为音频波形。

谷歌Generating audio for video

We experimented with autoregressive and diffusion approaches to discover the most scalable AI architecture,and the diffusion-based approach for audio generation gave the most realistic and compelling results for synchronizing video and audio information.我们尝试了自回归和扩散方法,以发现最具可扩展性的人工智能架构,而基于扩散的音频生成方法在同步视频和音频信息方面取得了最真实、最令人信服的结果。Our V2A system starts by encoding video input into a compressed representation.Then,the diffusion model iteratively refines the audio from random noise.This process is guided by the visual input and natural language prompts given to generate synchronized,realistic audio that closely aligns with the prompt.Finally,the audio output is decoded,turned into an audio waveform and combined with the video data.我们的V2A系统首先将视频输入编码为压缩表示。然后,扩散模型从随机噪声中迭代改进音频。这一过程以视觉输入和自然语言提示为指导,生成与提示密切配合的同步逼真音频。最后,对音频输出进行解码,将其转化为音频波形,并与视频数据相结合。Diagram of our V2A system,taking video pixel and audio prompt input to generate an audio waveform synchronized to the underlying video.First,V2A encodes the video and audio prompt input and iteratively runs it through the diffusion model.Then it generates compressed audio,which is decoded into an audio waveform.我们的V2A系统示意图,该系统利用视频像素和音频提示输入生成与底层视频同步的音频波形。首先,V2A对视频和音频提示输入进行编码,并通过扩散模型反复运行。然后生成压缩音频,并解码为音频波形。

Others are asking
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别
AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。 在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。 例如,GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT3 这样连贯回应的能力。
2025-03-22
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
大语言模型领域, 如何理解“退火”概念。 请用通俗易懂的方式举例说明
在大语言模型领域,“退火”是一个相对复杂的概念。通俗地说,您可以把它想象成铁匠打铁时的一个过程。铁匠在打造铁器时,不会一开始就用猛火高温一直烧,而是会逐渐升高温度,然后再慢慢降低温度,让金属的结构更加稳定和优化。 在大语言模型中,“退火”的作用类似于此。它可能是在模型的训练过程中,对某些参数或者条件进行逐步的调整和优化,以达到更好的性能和效果。但目前提供的知识库内容中,没有直接关于大语言模型中“退火”概念的详细且通俗易懂的解释和具体例子。
2024-08-13
纯AI打造的儿童绘本动画剧集《森林童话会》即将上线
很抱歉,目前没有关于纯 AI 打造的儿童绘本动画剧集《森林童话会》的更多详细信息。
2025-04-15
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
动画设计AI
以下是为您提供的有关动画设计 AI 的相关内容: 和 AI 一起做动画:作者介绍了几类工具与对应教程,制作了一个 AI 风格迁移视频,在短视频平台爆火。工具涉及 Runway Gen1、Stable Diffusion + EbSynth、Rerender、Warpfusion 等。作者为,原文发布时间 2023.07,入库时间 2023/10/18。 图片转动画|Ai 帮我 1 分钟做 32 个动画|AIGC:今天教大家用 Ai 把图片转动画的方法,用到的 Ai 工具是 ANIMATED DRAWINGS,作者为,入库时间 2023/10/26。 以下是一些相关的 AI 网站: ZMO.AI:只需单击一个按钮,即可从文本或图像生成令人惊叹的 AI 艺术、图像、动漫、逼真的照片。公司名为 ZMO,网站分类为图像设计,链接为,添加时间 2023/05/25。 稿定设计 AI:稿定 AI 是一款 AI 人工智能在线设计工具,简单易用。公司名为稿定,分类为图像设计、图像编辑、去除背景,链接为,添加时间 2023/05/25。
2025-04-11
coze怎么搭建矢量图动画
以下是搭建矢量图动画的 coze 步骤: 1. 创建工作流: 点击工作流后面的“➕”来添加一个工作流。 点击创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰避免误会。 2. 初始化的工作流: 左边有各种插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有参数说明,之后只介绍需要使用的插件,其他可自行尝试。 初始化后会生成开始模块和结束模块,默认生成且有且只有一个,只能以开始模块启动,结束模块终结工作流。 可观看工作流的视频教程: ,注意视频中有个小 bug,使用 text2image 时最后的 prompt 参数设置错了,可自行调整。 3. 需求分析:主要需求是国内可直接使用且能批量生产,选用扣子搭建工作流。 批量生成句子:不同于手动搭建,一次性生成的句子都进行生成图片处理,建议一次不要生成太多,设置为一次生成五句。 句子提取:把生成的句子一个一个提取出来,针对每个句子画图。 图片生成:根据生成的句子,结合特有画风等描述绘图。 图片和句子结合:扣子工作流本身支持 Python 代码,但环境缺少画图、图片处理的包,可替换成搞定设计的方式处理图片,会 PS 脚本效果也不错。 4. 扣子使用链接分享: 试用链接分享:豆包使用链接未发布,扣子使用链接:https://www.coze.cn/s/iMCq73wp/ 。 效果展示:可自行查看。 5. 批量生产图片:可观看视频演示: 及效果展示。 总结:第一次用录视频方式展示,怕截图说不清楚,文字处理及批量放入 excel 文件操作可用 ai 辅助,有问题可留言。
2025-04-08
动画方面的AI
以下是关于动画方面的 AI 相关信息: AI 漫画 Anifusion: 网址:https://anifusion.ai/ ,Twitter 账号:https://x.com/anifusion_ai 功能: AI 文本生成漫画:输入描述性提示生成漫画页面或图像。 直观的布局工具:提供预设模板,可自定义漫画布局。 强大的画布编辑器:在浏览器中优化和完善生成的作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同风格和效果。 商业使用权:用户对创作作品拥有完整商业使用权。 使用案例: 独立漫画创作:帮助无绘画技能的艺术家实现故事创作。 快速原型设计:专业艺术家快速可视化故事概念和布局。 教育内容:为课程和演示创建视觉内容。 营销材料:制作动漫风格促销漫画或活动分镜脚本。 粉丝艺术和同人志:基于喜欢的作品创作衍生作品。 优点:非艺术家也能轻松创作漫画;基于浏览器,无需安装额外软件;快速迭代和原型设计能力;拥有创作的全部商业权利。 3 月 12 日 AI 资讯中的动画相关: 【AI 3D】 BlenderMCP:与 Claude AI 沟通,在 Blender 实现快速 3D 建模 MIDI:单幅图像到 3D 场景生成 Move AI:更新动作捕捉能力,提出 Gen 2 Spatial Motion 【AI 写作】 MMStoryAgent:AI 多模态故事生成系统 【AI 视频】 VACE:阿里推出一体化视频创作和编辑技术 VideoPainter:腾讯开源视频编辑技术 Wonder Dynamics:推出摄像机轨道(Camera Track)和清洁板(Clean Plate)功能 【其他】 OpenAI:为开发者推出一套 AI Agent 开发套件 R1Omni:阿里情感识别模型,通过视频识别情感 Luma AI:发布新的预训练范式 IMM,旨在突破算法瓶颈,提高生成预训练算法的性能 Manus:宣布与阿里通义千问团队达成战略合作 游戏中的生成式 AI 革命中的动画相关: 生成纹理:几个团队正在追求根据文本或图像提示轻松生成纹理的机会,包括 BariumAI(https://barium.ai/)、Ponzu(https://www.ponzu.gg/)和 ArmorLab(https://armorlab.org/)。 动画生成与处理:涉足从视频中捕捉动画及给现有动画应用滤镜的公司包括 Kinetix(https://www.kinetix.tech/)、DeepMotion(https://www.deepmotion.com/)、RADiCAL(https://getrad.co/)、Move Ai(https://www.move.ai/)和 Plask(https://plask.ai/)。
2025-03-21
有没有简单输入故事,就生成结合图片、剧情解说的动画的AI工具
以下为您介绍一些能够简单输入故事,就生成结合图片、剧情解说的动画的 AI 工具: Anifusion: 网址:https://anifusion.ai/ Twitter 账号:https://x.com/anifusion_ai 主要功能: AI 文本生成漫画:输入描述性提示,AI 会生成相应漫画页面或图像。 直观的布局工具:提供预设模板,也可自定义漫画布局。 强大的画布编辑器:可在浏览器中直接优化和完善生成的艺术作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同艺术风格和效果。 商业使用权:用户对创作作品拥有完整商业使用权。 使用案例: 独立漫画创作:让无绘画技能的漫画艺术家实现故事创作。 快速原型设计:帮助专业艺术家快速可视化故事概念和布局。 教育内容:为教师和教育工作者创建视觉内容。 营销材料:企业可制作促销漫画或分镜脚本。 粉丝艺术和同人志:粉丝可创作衍生作品。 优点:非艺术家也能轻松创作漫画,基于浏览器无需安装额外软件,具备快速迭代和原型设计能力,拥有创作的全部商业权利。 此外,ChatGPT 也能在一定程度上参与生成对话内容和剧情。例如,通过 System Prompt 介绍游戏故事背景和小机器人人设,结合游戏关键事件生成故事情节介绍,并以小机器人自述形式呈现。在实际实现过程中,可选择离线生成一次性剧情文案保存到游戏中,但文案固定略显单调;也可实时生成,但每次生成有延迟,可能导致游戏停顿感。因此,可在每局对局开始前为游戏关键节点一次性生成所有文案,既保证每次游戏文案不同,又避免游戏停顿。剧情故事格式由预定义的 json 表达,ChatGPT 只需替换填充内容。实时对话与剧情类似,但需解决小机器人区分聊天和执行指令的问题,挑战在于 ChatGPT 支持生成“多模态”返回信息。
2025-03-19
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
我想生成一个爆款小说描述词
以下是为您生成爆款小说描述词的一些建议: 1. 遵循“形容词+主语+环境+行为+构图+参考风格+渲染程度+后缀”的公式。例如,对人物的描述要包括情绪、发型、穿着等细节,对环境的描写要涵盖天气、地理位置等要素,还要对摄影、灯光和成像质量进行描述,并规定绘图比例。 2. 对于写小说本身,提示词相对简单。但要注意搜索相关思路,用上下文告诉模型需求中的概念含义,并将搜索结果结构化,方便模型理解。 3. 当为儿童创作简单易懂的绘画描述时,要符合逻辑且简单直白,有镜头描述,不增加额外元素。若主体为中国相关,要在描述中提及;未明确古代则默认为现代场景和人物。描述人物要涵盖多个维度,描述场景也要考虑多个方面,且要强调主体。
2025-04-08
现在我想通过一段描述生成一段视频,那么我现在用哪一个?工具是最好的呢。我想说的是现在因为在国内访问不了国外的网站,那么国内有没有哪些应用比较功能强大的是视频生成工具。
以下是一些在国内可用且功能强大的视频生成工具: 1. VIGGLE:可以直接通过文字描述让任何静态图动起来,能做各种动作,如跳舞等。其核心技术基于 JST1 模型,能理解真实世界的物理运动原理,生成的视频很真实,还能直接文字生成视频,进行各种角色混合和动作替换。核心功能包括可控制的视频生成、基于物理的动画、3D 角色和场景创建。 2. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。 4. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 5. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 6. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,用户提供文本描述即可生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,您可以根据自己的具体情况进行选择。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-23
现在我想通过一段描述生成一段视频,那么我现在用哪一个?工具是最好的呢。
以下是一些可用于根据文字描述生成视频的工具: 1. Adobe Firefly:其“生成视频”(测试版)能将书面描述转换为视频剪辑。您可以使用文本提示定义内容、情感和设置,包括摄像机角度,还能合并图像为视频生成提供视觉提示。操作步骤为:在 Adobe Firefly 网站上选择“生成视频”,在 Generate video 页面输入文本提示,也可在图像部分上传图像用于第一帧并提供方向参考,在 General settings 部分确定 aspect ratio 和 frames per second。 2. VIGGLE:其核心技术基于 JST1 模型,能理解真实世界的物理运动原理,生成的视频很真实。核心功能包括可控制的视频生成、基于物理的动画、3D 角色和场景创建。用户可通过文字描述指定角色动作和场景细节来生成视频。 3. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 4. SVD:如果熟悉 Stable Diffusion,可安装此最新插件,在图片基础上直接生成视频,是由 Stability AI 开源的 video model。 5. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 6. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 7. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 以上工具适用于不同的使用场景和需求,您可以根据自身具体情况选择。更多文生视频的网站可查看:。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-23
即梦提示词的描述结构框架是什么
即梦提示词的描述结构框架主要包括以下方面: 1. 提示词基础架构: 主体/场景 场景描述 环境描述 艺术风格/媒介 调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述。 避免模糊的术语表达,尽可能准确。 使用更加流畅准确的口语化措辞,避免过度文学化的叙述。 丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 提示词与画面联想程度的说明: 以单帧图像为例介绍提示词与画面联想的关系。 基础词示例:玻璃桌上的咖啡杯,杯子外面写着单词 LOVE。 适度联想扩充:花园里(具体的位置描述)的透明(材质描述)玻璃桌上的咖啡杯,杯子外面写着单词 LOVE,周围满是盛开的鲜花(具体的位置描述/环境描述),和煦的阳光洒满整个花园(环境描述),Claude Monet(艺术家风格),印象派风格(艺术流派风格)。 联想关键点: 具体详实的位置描述/环境描述:笼统来讲就是在进行构图,可以帮助构建画面的基本呈现效果。 艺术风格描述:进一步提升效果和氛围,统一画面风格。 此外,结构化提示词框架还包括: 1. 标识符:如 、<> 等符号(、 也是),依次标识标题、变量,控制内容层级,用于标识层次结构。 2. 属性词:如 Role、Profile、Initialization 等等,包含语义,是对模块下内容的总结和提示,用于标识语义结构。 您可以把结构化提示词框架当做提示词的八股文标准,在不了解如何开始进行提示词设计的时候,当做一个通用的标准格式来使用。结构化提示词的概念在行业内应用广泛且成熟度较高,您可以在即刻、知识星球、知乎等很多地方看到优秀的类型案例。例如以下案例: 关于结构化提示词的理论感兴趣想要进一步了解更多信息的朋友,推荐大家阅读李继刚和云中江树的详细理论原文: 结构化语法提示词示例:可以在 AGI 的下列板块看到非常多优秀的结构化 Prompt 示例。
2025-03-23
我想向同事领导推荐这个网站,如何描述这个网站,把网站推荐出去的同时还能展示自己对ai行业的高度关注和持续的学习
以下是向同事领导推荐“通往 AGI 之路”网站的描述: “通往 AGI 之路”是一个极其出色的网站,涵盖了大量关于 AI 的丰富内容,并且在持续更新。 对于学习者,它提供了清晰的学习路径,从基础知识到进阶技术,通过丰富的课程、活动和竞赛帮助学习者逐步提升,最终成为企业所需的高素质 AI 人才。 对于创作者,掌握 AI 技术后能利用社区资源创作出优质内容与服务,助力企业应用 AI 技术,为社区发展注入活力。 对于企业,它能链接 AI 产品和传统企业,提供优质的 AI 内容与服务,还能从学习者中获取潜在的工具推广流量。 该网站拥有 3000 多篇精华文档,吸引了 100 万用户,访问量达 2000 万次。其特色包括学习路径规划、学习方法论、最新最精华内容,鼓励组队共学、每周直播共学、上千人同时在线学习,举办 175 所校园学习和创业路演,挖掘孵化潜质人才,社区成员年龄跨度大,从 5 岁孩童到 70 岁终身学习者。此外,还有 1000 人的 AI 切磋大会、线下交流技能交换,以及最全最新的提示词教程和创意,吸引全球顶尖开发者、艺术家和行业落地者,包揽各大 Agent 平台比赛大奖,是 AI 视频创作者生态发源地,能进行品牌传播、活动策划、新品发布,还提供人才输送和行业数据咨询服务。 在功能方面,您可以和 AI 知识库对话,询问任何关于 AI 的问题;还能找到集合的精选 AI 网站,按需求挑选适合的工具;有集合的精选提示词,可复制到 AI 对话网站使用;并且会将每天知识库的精华内容呈现给大家。 总之,这个网站是我们在 AI 学习道路上的好助手,充分展示了 AI 领域的前沿动态和实用价值,非常值得大家去学习了解。
2025-03-21