Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别

Answer

AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。

与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。

在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。

例如,GPT-3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT-3 这样连贯回应的能力。

Content generated by AI large model, please carefully verify (powered by aily)

References

报告:GPT-4 通用人工智能的火花

Introduction智能是一个多方面而难以捉摸的概念,长期以来一直挑战着心理学家、哲学家和计算机科学家。1994年,一组52名心理学家签署了一份有关智能科学的广泛定义的社论,试图捕捉其本质。共识小组将智能定义为一种非常普遍的心理能力,其中包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。这个定义意味着智能不仅限于特定领域或任务,而是涵盖了广泛的认知技能和能力——建立一个能够展示1994年共识定义所捕捉到的通用智能的人工系统是人工智能研究的一个长期而宏伟的目标。在早期的著作中,现代人工智能(AI)研究的创始人提出了理解智能的一系列宏伟目标。几十年来,AI研究人员一直在追求智能的原则,包括推理的普适机制(例如[NSS59],[LBFL93])以及构建包含大量常识知识的知识库[Len95]。然而,最近的许多AI研究进展可以描述为「狭义地关注明确定义的任务和挑战」,例如下围棋,这些任务分别于1996年和2016年被AI系统掌握。在1990年代末至2000年代,越来越多的人呼吁开发更普适的AI系统(例如[SBD+96]),并且该领域的学者试图确定可能构成更普遍智能系统的原则(例如[Leg08,GHT15])。名词「通用人工智能」(AGI)在2000年代初流行起来(见[Goe14]),以强调从「狭义AI」到更广泛的智能概念的追求,回应了早期AI研究的长期抱负和梦想。我们使用AGI来指代符合上述1994年定义所捕捉到的智能广泛能力的系统,其中包括了一个附加的要求,即这些能力在或超过人类水平。然而,我们注意到并没有一个被广泛接受的AGI定义,我们在结论部分讨论其他定义。

邬嘉文:大模型应用层

作者:Garman邬嘉文原文:https://mp.weixin.qq.com/s/b7Cctfgb4w5LCCBrSYIlrg[heading2]Transformer决定边界[content]在CES 2024,李飞飞在争论LLM和AIGC名称不能混用,吴恩达觉得在公众传播没关系。李飞飞觉得难以接受,个人猜测是它模糊了大模型的本质。在公众传播层面:AIGC:指用Stable Diffusion或Midjourney生成图像内容,后来泛指用AI生成音乐、图像、视频等内容。LLM:指NLP领域的大语言模型,如ChatGPT。GenAI:生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了LLM和AIGC。AGI:指通用人工智能,部分人觉得LLM具有AGI潜力,LeCun反对。公众传播一般会混用上述名词,但底层是transformer结构。(stable diffusion原采用LDM+UNet,后来改为DiT)而transformer底层是function loss损失函数Transformer是一个大参数(千亿级别)的回归方程。回归方程的Function loss拟合A to B mapping关系,实现数据集的压缩与还原。Transformer是在一定prompt condition情况下,repeat曾经出现过的数据内容,实现“生成”能力。大语言模型的智能体验在两个数据集压缩后,能解释两个数据集之间地带的“连续”能力。(Ilya)所以大语言模型是一个perfect memory,repeat曾经出现的内容。它与Alpha Go差异:Alpha Go是一个增强学习模型,学习结果会调整模型自身参数Alpha Go有推理能力,但大语言模型这块很弱。Transformer决定LLM是一个生成式模型。

OpenAI 通用人工智能(AGI)的计划被揭露

Q*的下一阶段,最初被称为GPT-6,但后来重新命名为GPT-7(原计划在2026年发布),由于埃隆·马斯克最近的诉讼而被暂停。计划在2027年发布的Q*2025(GPT-8)将实现完全的AGI......Q*2023=48智商Q*2024=96智商(推迟)Q*2025=145智商(推迟)埃隆·马斯克因为他的诉讼导致了推迟。这就是我现在揭示这些信息的原因,因为不会再造成进一步的伤害。我已经看过很多关于人工通用智能(AGI)的定义,但我将简单地将AGI定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。这是现在大多数人对这个词的定义。2020年是我第一次对一个AI系统感到震惊——那就是GPT-3。GPT-3.5是GPT-3的升级版本,也是ChatGPT背后的模型。当ChatGPT发布时,我感觉更广泛的世界终于赶上了我两年前就开始互动的东西。我在2020年广泛使用GPT-3,并对它的推理能力感到震惊。GPT-3及其半步后继者GPT-3.5(在2023年3月升级为GPT-4之前,它驱动了现在著名的ChatGPT)在某种程度上是朝着AGI迈出的巨大一步,而早期的模型则不是这样。需要注意的是,像GPT-2这样的早期语言模型(基本上自Eliza以来的所有聊天机器人)实际上没有真正连贯回应的能力。那么为什么GPT-3会有如此巨大的飞跃呢?

Others are asking
什么是AGI
AGI 即人工通用智能,通常被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。 例如,OpenAI 的相关计划中,Q2025(GPT8)将实现完全的 AGI,但因一些原因有所推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 在关于 AGI 实现后未来 20 年人类社会的变革的研究中,AGI 的出现被视为人类历史上具有转折意义的事件。 Sam Altman 认为,呈现人工通用智能特征的系统正浮现,人工通用智能通常指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,它是人类进步脚手架上的另一个工具。
2025-04-18
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。AGI 的出现被视为人类历史上具有转折意义的事件,当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,包括社会结构、价值观、权力格局、人类角色等多个方面。我们的使命应是确保 AGI 造福全人类,从某种意义上说,AGI 是人类进步脚手架上的另一个工具。
2025-04-15
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!
WayToAGI(通往AGI之路)是一个由热爱AI的专家和爱好者共同建设的开源AI知识库。它具有以下特点和优势: 1. 整合了各种AI资源,让大家能轻松学习AI知识,应用各类AI工具和实战案例。 2. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 3. 时刻追踪AI领域最新进展并更新,每次访问都有新收获。 4. 涵盖丰富的内容,包括AI视频、AI绘画、AI音乐、AI艺术、AI即兴戏剧、AI Agent共学等。 5. 为用户提供全面系统的AI学习路径,辅助思考,让学习过程少走弯路。 6. 自 2023 年 4 月 26 日诞生,在无推广情况下,一年已有超 70 万用户和超千万次访问量。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。访问“waytoagi.com”即可找到社群。
2025-04-12
身份是小学语文老师,如何自学waytoAGI
以下是为您整理的相关内容: 1. 10 月 9 日小作业中提到:熟悉 waytoagi 知识库,并找到 Prompt 提示词框架文章,给出两个提示词框架和生成结果。框架一是“CRISPE 框架”,处理小学六年级同学丢钱引发的同桌纠纷,给出三种解决方式,包括调查真相、教育双方,全班寻找失物、避免误解,引导调解与反思。生成结果为详细的解决步骤。同时提到人工智能时代的三个基石是数据、算法、算力,数据和算法可在开源数据库等找到,算力可在云计算平台如 AWS、Google Cloud、Microsoft Azure 找到。 2. 6 月 11 日 AI 秒学团队中,有人分享了搭建聊天功能工作流的经历,提到在实践中不断迭代、调整和优化。一位纯社科背景的高校老师感谢 way to AGI 带文科生进入 agent 的“坑”,并提到小团队给予的帮助。 3. 问卷中,刘翔宇表示自己是国内一线互联网 AI 产品经理,愿意共同维护 WaytoAGI 开源社区,学习目标是了解 Comfy 基础理论等多方面,所在城市为北京。
2025-04-12
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
有哪些好用的法律ai
以下是一些好用的法律 AI 应用场景和示例: 1. 诉讼策略制定: AI 将基于商标法等相关条款和案例法,为商标侵权案件提供诉讼策略,包括对原告商标权利的分析、被告侵权行为的评估、关键证据搜集建议、法律抗辩点及和解或调解策略。 其他例子: 为专利侵权案件制定诉讼策略,分析专利有效性、被告侵权行为及抗辩理由,提出证明侵权和计算损害赔偿的建议。 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略,包括主张权益、证据收集重点及证明雇主违约行为。 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略,包括证明许可协议违反、计算损失赔偿及可能的合同解除条件。 模拟法庭,如模拟商业合同违约的法庭审理,分析双方论点、证据和法律依据,预测判决结果,给出优化法庭陈述和证据呈现的建议。 2. 法律意见书撰写: AI 根据案件背景、证据材料和法律法规,自动撰写初步法律意见书,包含案件事实梳理、法律分析和结论。 其他例子: 针对商业秘密泄露案件,分析法律责任和赔偿范围,撰写法律意见书,提供应对策略。 为计划上市的公司提供关于公司治理结构的法律意见书,确保符合相关法规要求。 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,制定应对措施。 起草股权转让协议,包括转让方和受让方信息、股权转让份额、价格、支付方式和时间表、先决条件、双方权利义务、保密、违约责任和争议解决条款等。 3. 指令风格和技巧: 可指定 AI 模仿某位资深律师的逻辑严谨和言简意赅的风格,使其提供的信息更符合专业律师的沟通和表达习惯。 运用 PEMSSC 方法,如选择个性化的风格、给出参考或逻辑结构、从多个角度思考、进行总结概括、使用分隔符号区分等。 个性化风格:选择幽默且富有洞察力的风格,融入创新视角。 参考和逻辑结构:在提供法律建议时,采用 SWOT 分析法或 4P 原则等逻辑结构。 多角度思考:在分析商事诉讼时,从市场趋势、竞争对手行为、战略规划、财务状况和市场前景等角度思考诉讼策略。
2025-04-18
AI术语解释
以下是一些常见的 AI 术语解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。属于技术范畴。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。属于通识范畴。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。属于技术范畴。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。属于技术范畴。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。属于通识范畴。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。属于技术范畴。 TPU(张量处理单元):谷歌开发的一种微处理器,专门用于加速机器学习工作负载。属于技术范畴。 Training Data(训练数据):用于训练机器学习模型的数据集。属于技术范畴。 Transfer Learning(迁移学习):机器学习中的一种方法,其中对新问题使用预先训练的模型。属于技术范畴。 Validation Data(验证集):机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。用于调整模型的超参数(即架构,而不是权重)。属于技术范畴。 Knowledge Distillation(数据蒸馏):数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。属于技术范畴。 RAG(检索增强生成):检索增强生成。属于技术范畴。 Forward Propagation(前向传播):在神经网络中,输入数据被馈送到网络并通过每一层(从输入层到隐藏层,最后到输出层)以产生输出的过程。网络对输入应用权重和偏差,并使用激活函数生成最终输出。属于技术范畴。 Foundation Model(基础模型):在广泛数据上训练的大型 AI 模型,旨在适应特定任务。属于技术范畴。 GAN(通用对抗网络):一种机器学习模型,用于生成类似于某些现有数据的新数据。使两个神经网络相互对抗:一个“生成器”,创建新数据,另一个“鉴别器”试图将数据与真实数据区分开来。属于技术范畴。 Generative AI/Gen AI(生成式 AI):AI 的一个分支,专注于创建模型,这些模型可以根据现有数据的模式和示例生成新的原创内容,例如图像、音乐或文本。属于通识范畴。 GPU(图形处理单元):一种特殊类型的微处理器,主要用于快速渲染图像以输出到显示器。在执行训练和运行神经网络所需的计算方面也非常高效。属于产品范畴。
2025-04-18
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
请解释一下AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 例如,OpenAI 致力于研发实现 AGI 的技术,像 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。人类在不断创新,从电力、晶体管、计算机、互联网,到很快可能出现的 AGI,每一代新的工具都推动着世界的进步。在未来,AGI 可能会让人们的生活在各方面获得极大的改善,比如治愈所有疾病、有更多时间陪伴家人以及充分发挥创造潜能等。
2025-03-06
langchain 大白话解释一下给我听
LangChain 是一个用于构建高级语言模型应用程序的框架。它能简化开发人员使用语言模型构建端到端应用程序的流程,提供了一系列工具、组件和接口,让创建由大型语言模型和聊天模型支持的应用程序更轻松。 其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是一系列组件或其他链的组合,用于完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,方便开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 3. 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策,并根据用户输入调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,能与外部数据源交互收集数据,还提供内存功能维护状态。它旨在为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。
2025-02-08
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
请解释一下AI智能体的概念及功能
AI 智能体是指类似于 AI 机器人小助手的存在。简单理解,参照移动互联网,它类似 APP 应用的概念。AI 大模型是技术,而面向用户提供服务的产品形式就是智能体,所以很多公司关注 AI 应用层的产品机会。 在 C 端,比如社交方向,用户注册后先创建自己的智能体,然后让其与他人的智能体聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有帮助 B 端商家搭建智能体的机会,类似 APP 时代专业做 APP 的。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。AI 智能体拥有各项能力,能帮我们做特定的事情。它包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。AI 智能体的出现是为了解决像 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,定制出适合自己的智能体来解决问题。 例如,扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可将其发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-12-17
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
大语言模型领域, 如何理解“退火”概念。 请用通俗易懂的方式举例说明
在大语言模型领域,“退火”是一个相对复杂的概念。通俗地说,您可以把它想象成铁匠打铁时的一个过程。铁匠在打造铁器时,不会一开始就用猛火高温一直烧,而是会逐渐升高温度,然后再慢慢降低温度,让金属的结构更加稳定和优化。 在大语言模型中,“退火”的作用类似于此。它可能是在模型的训练过程中,对某些参数或者条件进行逐步的调整和优化,以达到更好的性能和效果。但目前提供的知识库内容中,没有直接关于大语言模型中“退火”概念的详细且通俗易懂的解释和具体例子。
2024-08-13