直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

有没有RAG 基本架构的中文图示

回答

以下是关于 RAG 基本架构的介绍:

RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下:

  1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。
  2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。
  3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。
  4. LLM 从检索到的上下文中合成答复返回给用户。

RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI 智能体:企业自动化的新架构 - Menlo Ventures

设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。

开发:LangChain应用开发指南-大模型的知识外挂RAG

RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

开发:LangChain应用开发指南-大模型的知识外挂RAG

RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

其他人在问
我希望做一个回答用户问题的聊天机器人,如何用rag来做
要使用 RAG(RetrievalAugmented Generation,检索增强生成)来做一个回答用户问题的聊天机器人,可以按照以下步骤进行: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 URL 提取内容,如需接收多个 URL 可稍作改动。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量:使用文本向量模型 bgem3(可从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3 ),通过 FAISS 创建一个高效的向量存储。 4. 基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。 5. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 6. 技术栈选择:经过调研,可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。 Langchain 简介:是当前大模型应用开发的主流框架之一,提供一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama 简介:是一个开箱即用的用于在本地运行大模型的框架。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。 2. 上下文数据质量和大模型的性能决定了 RAG 系统性能的上限。 3. RAG 通过结合检索技术和生成模型来提升答案的质量和相关性,可以缓解大模型幻觉、信息滞后的问题,但并不意味着可以消除。
2024-11-20
RAG研究报告有哪些
以下是一些关于 RAG 的研究报告: 1. 《RAG 系统开发中的 12 大痛点及解决方案》:研究了开发检索增强生成(RAG)系统时遇到的 12 个主要难题,并提出了相应的解决策略。通过将挑战和解决方法并列在一张表中,更直观地展示了设计和实施 RAG 系统面临的复杂挑战。 2. 《小七姐:精读翻译《提示词设计和工程:入门与高级方法》》:提到在解决预训练大型语言模型(LLM)的限制方面,RAG 成为关键创新,通过动态整合外部知识扩展了 LLM。还介绍了 RAG 感知提示词技术,如 FLARE 以创新方法增强 LLM 性能。 3. 《通过增强 PDF 结构识别,革新检索增强生成技术》:包含对 PDF 识别对 RAG 影响的实验研究,通过列举 ChatDOC 在查询特斯拉用户手册中的具体案例,突出了 ChatDOC 解析方法在处理表格和呈现方式上的有效性。
2024-11-20
如何利用飞书构建RAG系统
以下是关于如何利用飞书构建 RAG 系统的相关内容: RAG 的常见误区: 随意输入任何文档就能得到准确回答:这是常见误区,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,需要专业知识和持续优化。 RAG 完全消除了 AI 的幻觉:虽然 RAG 可以显著减少幻觉,但并不能完全消除,只要有大模型参与,就有可能产生幻觉。 RAG 不消耗大模型的 Token 了:从大模型生成结果环节可以看出,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出,所以 RAG 仍然消耗大模型的 Token。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 RAG 性能提升策略和评估方法(产品视角): 前言:RAG 是检索增强生成的缩写,是结合检索模型和生成模型的技术,核心目的是把知识告诉给 AI 大模型,让其“懂”我们,核心流程是根据用户提问从私有知识中检索相关内容,与用户提问一起放入 prompt 中提交给大模型,常见应用场景如知识问答系统。
2024-11-20
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
RAG加速有什么好办法吗
以下是一些加速 RAG 的好办法: 1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。 此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章: 1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。 2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
2024-11-12
最简单易懂的transformer图示
为了方便理解,我会尽量使用非技术术语进行解释,并配上一些图表。 Transformer 是 Google Research 于 2017 年提出的一种神经网络架构,它已经被证明了在自然语言处理 任务中的有效性,并被广泛应用于机器翻译、文本摘要、问答等领域。 Transformer 的基本原理是通过 注意力机制 来学习词与词之间的依赖关系,从而更好地理解句子的语义。 以下是一张简化的 Transformer 架构图: ! 图中主要包含以下几个部分: 编码器 : 编码器由多个相同的编码器层组成,每个编码器层又由两个子层组成: 自注意力层 : 自注意力层负责学习词与词之间的依赖关系。 前馈神经网络层 : 前馈神经网络层负责对每个词进行非线性变换。 解码器 : 解码器由多个相同的解码器层组成,每个解码器层又由三个子层组成: 自注意力层 : 解码器的自注意力层负责学习词与词之间的依赖关系,以及词与编码器输出之间的依赖关系。 编码器解码器注意力层 : 编码器解码器注意力层负责将编码器输出的信息传递给解码器。 前馈神经网络层 : 解码器的前馈神经网络层负责对每个词进行非线性变换。 位置编码 ,因此需要显式地将位置信息编码到输入序列中。 Transformer 的工作流程如下: 1. 将输入序列转换为词嵌入表示。 2. 编码器对输入序列进行编码,并输出编码器输出序列。 3. 解码器以自注意力机制为基础,根据编码器输出序列和之前生成的输出词,预测下一个词。 4. 重复步骤 3,直到生成完整的输出序列。 Transformer 的注意力机制是其核心思想,它使 Transformer 能够捕获长距离依赖关系,从而更好地理解句子的语义。 以下是一张简化的注意力机制示意图: ! 图中主要包含以下几个部分: 查询 : 查询代表要计算注意力的词。 键 : 键代表所有候选词。 值 : 值代表所有候选词的语义信息。 注意力分数 : 注意力分数代表查询词与每个候选词之间的相关程度。 加权值 : 加权值代表每个候选词对查询词的贡献程度。 注意力机制的计算过程如下: 1. 对查询、键和值进行缩放变换。 2. 计算查询与每个键的点积。 3. 对点积进行 softmax 运算,得到注意力分数。 4. 将注意力分数与值相乘,得到加权值。 5. 将所有加权值求和,得到最终的输出。 Transformer 模型的出现是 NLP 领域的一个重大突破,它使 NLP 任务的性能得到了大幅提升。Transformer 模型及其衍生模型已经被广泛应用于各种 NLP 任务,并取得了 stateoftheart 的结果。 希望以上解释能够帮助您理解 Transformer 的基本原理。
2024-04-29
请问有ai生成架构图的工具么
以下是一些可以生成架构图(包括逻辑视图、功能视图、部署视图)的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建多种类型图表。 7. PlantUML:文本到 UML 转换工具,通过编写描述生成序列图等,辅助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 请注意,这些工具并非都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否支持特定建模语言、是否与特定开发工具集成、偏好在线工具或桌面应用程序等。 此外,以下是一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)的生成设计工具,可根据设计目标和约束条件自动产生多种设计方案。 这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。 以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
AI生成系统架构图 用什么
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-10-30
AI搜索工程架构
以下是关于 AI 搜索工程架构的相关内容: 一、可插拔架构 在整个搜索回答的全流程,有很多节点可以做 Hook 埋点,每个 Hook 可以挂载零至多个插件,多个插件构成了 AI 搜索的可插拔架构。一些常用的功能,可以由 AI 搜索平台自身或第三方创作者抽离成标准插件,用在 AI 搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。 二、提升可玩性 可以预置一个 after_answer 钩子,在大模型回答完用户 query 之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。 三、自定义智能体 Agent 智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以 ChatGPT 的 GPTs 举例,一个智能体应用由以下几部分自定义操作组成: 1. 提示词:描述智能体的作用,定义智能体的回复格式。 2. 知识库:上传私有文件作为回答参考。 3. 外挂 API:请求第三方 API 获取实时数据。 4. 个性化配置:是否联网/是否使用图片生成/是否使用数据分析等。 四、提升准确度 1. 为获取足够信息密度,需获取链接详情页内容。通过上一步的 Reranking 选择最匹配的 top_k 条数据,避免获取全部内容导致 context 超限。为保证获取详情内容的效率,可做并行处理,如通过 goroutine 或者 python 的协程并行读取 top_k 条链接。获取链接详情内容有多种方案,如网页爬虫、无头浏览器抓取、第三方 Reader 读取等。 2. 构建上下文内容池 Context Pool,将历史搜索结果和历史对话消息组成 Context Pool。每次搜索后追问,都带上这个 Context Pool 做意图识别/问题改写,拿到新的检索结果后更新这个 Context Pool,并带上最新的 Context Pool 内容作为上下文请求大模型回答。需要保证 Context Pool 的内容有较高的信息密度,同时控制其内容长度,不要超过大模型的 context 极限。 五、检索增强生成 以 Sana 的企业搜索用例为例,RAG 过程始于应用程序加载和转换无结构文件,转换为 LLM 可查询格式,文件被“分块”成更小的文本块,并作为向量嵌入和存储在数据库中。当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的应用程序流程,包含多个检索步骤和提示链,不同类型的任务并行执行,然后将结果综合在一起,以生成最终输出。
2024-10-26
怎们架构专属自己企业的AI系统
要架构专属自己企业的 AI 系统,可以参考以下步骤: 一、逐步搭建 AI 智能体 1. 搭建整理入库工作流 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置需根据实际需求进行。 2. 在外层 bot 中封装工作流,完成整体配置 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试下来通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 二、相关术语 以下是一些在 AI 系统架构中可能涉及的术语: 1. AI 或 AI 系统或 AI 技术:具有“适应性”和“自主性”的产品和服务,如在定义的第 3.2.1 节中所述。 2. AI 供应商:在 AI 系统的研究、开发、培训、实施、部署、维护、提供或销售中发挥作用的任何组织或个人。 3. AI 用户:使用 AI 产品的任何个人或组织。 4. AI 生命周期:与 AI 系统的寿命相关的所有事件和过程,从开始到退役,包括其设计、研究、培训、开发、部署、集成、操作、维护、销售、使用和治理。 5. AI 生态系统:在 AI 生命周期中实现 AI 使用和供应的复杂网络,包括供应链、市场和治理机制。 6. 基础模型:在大量数据上训练的一种 AI 模型,可适用于广泛的任务,可作为构建更具体 AI 模型的基础。 经过上述配置,您可以在「预览与调试」窗口与 AI 智能体对话并使用全部功能。
2024-09-11
输入文字,生成组织架构图
以下是一些可以用于生成组织架构图的工具: 1. PlantUML:这是一个文本到 UML 的转换工具,通过编写描述性文本可自动生成序列图、用例图、类图等,能帮助创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 需要注意的是,这些工具并非都基于 AI。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否需要支持特定建模语言、与特定开发工具集成、偏好在线工具或桌面应用程序等。 另外,增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成(包括图片、PPT、PDF)。在图片理解与生成场景中,在对话框输入诉求即可测试效果,比如生成常见的系统架构风格架构设计图,给出一张图片。通过简短的文本就能让 Bot 生成相应的图片,这背后是文本到图片或视频等其他格式内容的映射关系,在日常工作中使用便捷。当然,也可以根据图片提取里面的关键知识内容。
2024-09-03
有没有把外国PPT翻译为中文的工具
以下为您介绍将外国 PPT 翻译为中文的工具及相关方法: 有一种自动 PPT 翻译脚本,其开发过程如下: 1. 前期准备: 翻译需要外接 API,推荐讯飞大模型,新账户免费送 200 万 tokens,有效期 3 个月。 进入 https://xinghuo.xfyun.cn/ ,首页选择 API 接入,然后点服务管理进入控制台。 创建一个新项目,比如“PPT 翻译”,以避免 API 泄露。 点进去,找到左边机器翻译的模型,按提示领取 200 万 tokens 的礼包,然后在主控台看到对应的 id、apikey、api secret 和接入路径。 2. 导入依赖: 大部分依赖是常用的,只有一个 ppt 可能需要装,运行 CMD 输入 pip install pythonpptx,如果还缺的可以按提示安装。 3. 初始化 API 相关信息和文件路径: 先设置对应的 api 信息,其他模型可以对应做替换。 4. 读取并提取 PPT 文本: 根据讯飞的 API 文档配置做请求指令,确保 API 可以正确调用。打印响应数据设置方便监测脚本执行动态,如果碰到报错可以随时做优化。 5. 翻译脚本: 目前只设置了文本翻译,未对表格元素处理,排除了所有 shape,如果要加入表格翻译,可以定义 shape = table 来定义表格,然后翻译表格里的 cell 实现。 接收路径已调好,如果用其他的 API,要在 translated_text = get_result 后面替换成自己的地址。 语言选择,原文件是中文用'cn'表示,英文文档改成‘en’,其他语种对应。 此外,还有 Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照),源地址 https://docs.anthropic.com/claude/docs ,扫码关注未来力场:AIGC 最佳实践中文互联网搬运工。
2024-11-21
写论文的中文ai
在论文写作领域,AI 技术提供了多方面的辅助,以下是一些相关的工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有以下中文的内容仿写和文章润色工具: 1. 内容仿写: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的创作助手,提升写作效率和创作体验。 2. 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化语言表达。 Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-17
可以把中文PPT翻译成法语的AI
歌者 PPT 是一款永久免费的智能 PPT 生成工具(gezhe.com),具有以下功能和优势: 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:拥有海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:可自定义模板、字体、动效等。 优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化制作流程,易于上手。 海量案例:提供大量精美模板和优秀案例可供选择和下载。 资料转 PPT 专业:支持多种文件格式,转换过程尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对学生和职场人士是福音。 智能化程度高,通过 AI 技术快速将资料转换成精美 PPT,高效准确。 模板和案例库丰富,适用于各种场景。 支持多语言,可一键生成目标语言的 PPT 或翻译写好的 PPT。 几乎无需学习成本,适合不擅长制作 PPT 或时间紧张的人群。 歌者 PPT 能够在保持 PPT 原始排版不变的情况下,实现多语言在线即时翻译,包括将中文 PPT 翻译成法语。
2024-11-11
Midjourney提示词 中文分析器
以下是一些与 Midjourney 提示词相关的网站和提示词基本格式的介绍: 相关网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,网址: MidJourney Prompt Tool:类型多样的 promot 书写工具,点击按钮就能生成提示词修饰部分,网址: OPS 可视化提示词:有 Mid Journey 的图片风格、镜头等写好的词典库,方便快速可视化生成自己的绘画提示词,网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,网址: Prompt Hero:好用的 Prompt 搜索,适用于 Stable Diffusion、ChatGPT 和 Midjourney,网址: OpenArt:AI 人工智能图像生成器,网址: img2prompt:根据图片提取 Prompt,网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供广泛的不同风格供选择,网址: 提示词基本格式: 可以总结为“形容词+主语+环境+行为+构图+参考风格+渲染程度+后缀”。首先对人物进行详细描述,包括情绪、发型、穿着等;然后描写环境,如天气、地理位置等;接着描述摄影、灯光和成像质量;最后用后缀词规定绘图比例。遵循这样的逻辑输入提示词,有助于生成更符合期望的高质量绘图。
2024-11-10
可以帮助看中文论文的ai工具有什么?
以下是一些可以帮助看中文论文的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,常见的文章润色 AI 工具还有: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 常用的 AIGC 论文检测网站和工具包括: 1. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。上传论文,系统自动分析并提供报告,标示可能由 AI 生成的部分。 2. Copyscape:主要检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,请注意内容由 AI 大模型生成,请仔细甄别。
2024-11-09
中文写作哪个AI工具更适合?
以下是一些适合中文写作的 AI 工具: 内容仿写方面: 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,能处理多种文体,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,能提升写作效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别) 文章排版方面: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:虽不是纯粹的 AI 工具,但常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本,使其更清晰专业。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档常用 Grammarly 和 PandaDoc 等。 论文写作方面: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化内容。 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。(内容由 AI 大模型生成,请仔细甄别)
2024-11-06