Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请你用简单易懂的语言告诉我comfyui和SD的区别

Answer

ComfyUI 和 SD(Stable Diffusion)主要有以下区别:

  1. UI 界面:SD WebUI 的 UI 更接近传统产品,有很多输入框和按钮;ComfyUI 的 UI 界面复杂,除输入框外,还有很多块状元素和复杂的连线。
  2. 学习成本:ComfyUI 的学习成本比 SD WebUI 高。
  3. 工作流方式:ComfyUI 主要通过连线搭建自动化工作流,从左到右依次运行;SD WebUI 则通过输入框和按钮配置参数。
  4. 灵活性和拓展性:ComfyUI 具有更高的自由和拓展性,可以根据自身需求搭建、调整甚至改造工作流,无需依赖开发者,还能开发并改造节点;SD WebUI 在这方面相对较弱。
  5. 功能实现:从功能角度看,两者提供的功能本质相同,但 ComfyUI 通过改变节点方式能实现不同功能,如一个节点是直接加载图片,另一个是通过画板绘制图片,从而实现导入图片生图和绘图生图等不同功能。
Content generated by AI large model, please carefully verify (powered by aily)

References

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-09-05 19:00原文网址:https://mp.weixin.qq.com/s/vdm9L_xsZc8d3ZZj7CrLdw在上一期介绍了ComfyUI的本地部署之后,很多小伙伴发现界面还是英文的,这样使用起来属实不太友好。而且,每一个流程都要自己搭建,操作起来很麻烦。但没关系,这个问题是可以解决的。了解过Blender的朋友一定都知道B站UP主“只剩一瓶辣椒酱”,他在blender界就是和秋叶大佬一样的存在,属于祖师级别的人物。最近,他和幻之境开发小组联合开发的一款基于STABLE DIFFUISON ComfyUI核心的Blender AI插件,将他们整合到了一起,名字叫做——无限圣杯。鉴于有的朋友还不知道blender是什么,我先在这里大致普及一下,因为我这个公众号也写了一年多的blender教程了,对这个软件还是比较熟悉的。它和SD一样,是一款免费开源的三维制作软件,曾经作为C4D的平替被大家所熟知。而一款开源软件,那就意味着它极高的自由度,可以将很多的功能包容进来,blender也正是以一款软件就能建立完整工作流而立足的。ComfyUI的界面很简单,主要是节点操作,而在一款三维软件当中,节点工作流可是家常便饭了。材质节点编辑器、纹理节点编辑器、几何节点编辑器等等,都是经常会用到的,所以Blender和ComfyUI从工作流程上就是天然适配。想不到研究了blender这么久,终于等到了AI绘画和blender结合的一天,不得不感叹一句:少年啊,这盛世如你所愿!

ComfyUI基础教程—小谈

应用场景为什么使用(为什么要使用)不可替代性了解ComfyUI的概念和重要性首先SD WebUI的UI更像是我们传统使用的产品,有很多输入框,还有多个按钮。而ComfyUI的UI界面则非常复杂,除了输入框,还有很多一块块的东西,并且还有很多复杂的连线。的确,从学习成本来看,ComfyUI的学习成本会比SD WebUI高。但是这种连线其实并不复杂,你可以这么理解:这些小的方块跟SD WebUI的输入框和按钮是一样的,都是对参数进行配置。连线有点像在搭建一个自动化的工作流,从左到右依次运行。从功能的角度看,其实两个产品截图所提供的功能是一样的,只是ComfyUI变成了这种连线的方式。这种方式有很什么好处了?我们一起来看看这两个用ComfyUI搭建的工作流:对比两个工作流,你会发现它只是有一个节点不一样,一个是直接加载图片,一个是通过画板绘制图片。这样就实现了两个不同的功能(一个是导入图片生图,一个是绘图生图)。这就意味着,你可以通过改变节点的方式来改变工作流,从而实现不同的功能。这样做有两个好处:你可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。你也可以根据自己的需求,去开发并改造某个节点。所以,选择ComfyUI最核心的原因就在于它的自由和拓展。那这就意味着你可以自己调整ComfyUI从而让它切合你的工作流,甚至改造你的工作流。在现在这种AI发展如此迅猛的时代,我认为保持灵活才是最重要的。说了这么多,我们来看一下ComfyUI的相关案例生成四格故事漫画

小田:ComfyUI基础教程—小谈

应用场景为什么使用(为什么要使用)不可替代性了解ComfyUI的概念和重要性首先SD WebUI的UI更像是我们传统使用的产品,有很多输入框,还有多个按钮。而ComfyUI的UI界面则非常复杂,除了输入框,还有很多一块块的东西,并且还有很多复杂的连线。的确,从学习成本来看,ComfyUI的学习成本会比SD WebUI高。但是这种连线其实并不复杂,你可以这么理解:这些小的方块跟SD WebUI的输入框和按钮是一样的,都是对参数进行配置。连线有点像在搭建一个自动化的工作流,从左到右依次运行。从功能的角度看,其实两个产品截图所提供的功能是一样的,只是ComfyUI变成了这种连线的方式。这种方式有很什么好处了?我们一起来看看这两个用ComfyUI搭建的工作流:对比两个工作流,你会发现它只是有一个节点不一样,一个是直接加载图片,一个是通过画板绘制图片。这样就实现了两个不同的功能(一个是导入图片生图,一个是绘图生图)。这就意味着,你可以通过改变节点的方式来改变工作流,从而实现不同的功能。这样做有两个好处:你可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。你也可以根据自己的需求,去开发并改造某个节点。所以,选择ComfyUI最核心的原因就在于它的自由和拓展。那这就意味着你可以自己调整ComfyUI从而让它切合你的工作流,甚至改造你的工作流。在现在这种AI发展如此迅猛的时代,我认为保持灵活才是最重要的。说了这么多,我们来看一下ComfyUI的相关案例生成四格故事漫画

Others are asking
你有内置sd吗
Stable Diffusion(SD)相关知识如下: SD 内置了 LyCORIS,使用 LoRA 模型较多,其与 LyCORIS 相比可调节范围更大。LoRA 和 LyCORIS 的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间。管理模型时可进入 WebUl 目录下的 models/LoRA 目录,在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 SD 的安装:系统需为 Win10 或 Win11。Win 系统查看配置,包括查看电脑系统(在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格)和查看电脑配置(需要满足电脑运行内存 8GB 以上、是英伟达(NVIDA)的显卡、显卡内存 4GB 以上。打开任务管理器:同时按下 ctrl + shift + esc,查看电脑运行内存和显卡内存)。配置达标可跳转至对应安装教程页,如 【SD】无需 Lora,一键换脸插件 Roop:勾选相关项目,确保包含 Python 和 C++包。更改安装位置,点击右下角安装。安装时间长需耐心等待。安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】下载。安装完成后,重新打开启动器,后台会继续下载模型,需全程科学上网。Roop 插件主要适用于真实人脸替换,对二次元人物作用不大。选用真实系模型,设置相关参数后生成,若人脸像素偏低模糊,可发送到“图生图”进行重绘。
2025-03-06
sd的关键词可以用中文吗
在 Stable Diffusion 中,通常只能识别英语关键词。但不用担心,您可以直接使用翻译工具将中文关键词翻译成英语后输入。比如,若您想生成一个漂亮的小姐姐站在大街上,可以写成“1 girl, beautiful, standing, street”这样的形式。输入关键词时,常用一个个单词并用英文状态下的逗号隔开。不过,对于中文字体的处理,也有一些方法,如将中文字做成白底黑字存成图片样式,再使用文生图的方式等。在输入关键词时,还可以先写一些提升照片质量的词语,使生成的照片更加精致。
2025-03-06
中文可以用sd吗
中文可以使用 Stable Diffusion(SD)。以下是使用 SD 制作中文文字的一些方法和步骤: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词“Cream+Cake”(加强质感),反关键词:“Easynegative”(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,如“3d,blender,oc rendering”。 5. 如果希望有景深效果,也可以打开“depth”(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:29 60。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7),源代码库:github.com/StabilityAI/stablediffusion 。
2025-03-06
b站的秋葉aaaki大佬对sd做过什么
B 站的秋葉 aaaki 大佬在 SD 方面的相关贡献包括: 1. 提供了 SD 的开源整合包和 LoRA 模型训练一键包。最新一次更新整合包版本为 v4.5,于 11 月更新。此整合包支持 SDXL,预装多种必须模型,无需安装 python、cuda、git,解压即用。获取方式为一键三连+关注私信发送“整合包”。 2. 其相关内容有助于用户了解 SD 的工作原理和基本功能,对于还未接触过 AI 绘画的朋友有启蒙作用。很多人在安装 SD 软件时会参考他的视频。 您可以通过以下链接获取更多相关资源: 整合包百度盘:https://pan.baidu.com/s/1MjO3CpsIvTQIDXplhE0OA?pwd=aaki LoRA 模型训练一键包百度盘:https://pan.baidu.com/s/1TBaoLkdJVjk_gPpqbUzZFw ,提取码:p8uy
2025-03-06
sd是哪位大佬做的
SD 是 Stable Diffusion 的简称。它是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,于 2022 年发布的深度学习文本到图像生成模型,主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。我们可以通过一系列的工具搭建准备,使用 SD 进行想要的图片 AIGC 。 此外,还有与 SD 相关的 Fooocus,它使用的是最新推出的 SDXL 1.0 模型,对 stable diffusion 和 Midjourney 做了结合升级。保留了 SD 的开源属性,可以部署到本地免费使用,在操作界面吸取了 Midjourney 简洁的特点,省去了 WebUI 中复杂的参数调节,让用户可以专注于提示和图像。配置要求为本地部署,需要不低于 8GB 的内存和 4GB 的英伟达显卡。Fooocus 介绍/安装包下载:https://github.com/lllyasviel/Fooocus 。 另外,在 Video Battle 视频挑战中,有一种方法是使用 SD 的分支版本 CONTROLNET 大佬开发的 Forge,特点是支持图生视频、图生 SD,而且对低端显卡支持良好。下载链接为:https://github.com/lllyasviel/stablediffusionwebuiforge/releases/download/latest/webui_forge_cu121_torch21.7z ,解压后,优先运行 update.bat 进行升级,然后再运行 run.bat ,接着就打开了和 SD 基本一模一样的界面。核心区别在于 FORGE 增加了 2 个王炸功能,SVD【图生视频】和 Z123【图生 3D】。
2025-03-06
sd可以用中文输入吗
SD3stable diffusion3 已开源,艺术实现更自由。Qwen2 接上 SD3 Medium 支持中文输入,会自动优化并输出英文提示词。相关资源如下: 下载地址(huggingface 比较慢,多放几个百度云盘): 工作流:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO Qwen2 插件:https://github.com/ZHOZHOZHO/ComfyUIQwen2 SD3 dreambooth 脚本:https://github.com/huggingface/diffusers/blob/sd3/examples/dreambooth/README_sd3.md 、https://github.com/bghira/SimpleTuner/tree/feature/sd3 另外,关于 SD 做中文文字有持续更新的教程: 制作思路可参考 Nenly 同学的视频教程:【“牛逼”的教程来了!一次学会 AI 二维码+艺术字+光影光效+创意 Logo 生成,绝对是 B 站最详细的 Stable Diffusion 特效设计流程教学!AI 绘画进阶应用哔哩哔哩】https://b23.tv/c33gTIQ 群友自制的详细视频教程步骤: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 5. 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:2960。 当然 https://firefly.adobe.com/也可以,但 SD 感觉可操控性更强,尤其是中文字体。
2025-03-06
COMfyui的文本联结节点怎么添加text3、text4
要在 ComfyUI 中添加 text3 和 text4 ,可以参考以下步骤: 1. 新建采样器:右键搜索找到 SDXL Sampler 点击即可。 2. 点击从 SDXL Sampler 采样器中的 Base_model 拖拽出选择 Load Checkpoint 节点,改名为 SDXL,并复制一个改名为 Refiner 连接到 SDXL Sampler 采样器中的 Refiner_model 。 3. 点击从 SDXL Sampler 采样器中的 Base_positive 拖拽出选择 Clip Text Encode 节点,改名为 Prompt ,复制一个并改名为 Negaive Prompt 。 4. 将 Text 改为输入 Convert text to input ,并复制出来 4 个,左边将 2 个连接 SDXL 的 Clip ,两个连接 Refiner ,右边依次连接 Base_Positive 、Base_Negaive 、Refiner_Positive 、Refiner_Negaive 。 5. 从节点中拉出一个通用节点并连接 text 。 6. 在文本节点上单击右键,选择【转换文本为输入】,此时,文本节点上就多了一个文本的连接点。 7. 加入一个新节点,右键点击 【新建节点】 【实用工具】 【Primitive 元节点】。 8. 将元节点与文本节点相连接,这时元节点就变成了正向提示词的输入框。同理,可以将负向提示词框也用元节点代替。 9. 再复制出一套正负提示词节点,一套给 base 模型,一套给 refiner 模型。然后,base 模型的那一套输出给第一个采样器节点,refiner 模型的那一套输出给第二个采样器节点。
2025-03-07
ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUI-aki(1)\ComfyUI-aki-v1.6\ComfyUI\models\checkpoints\flux1-dev-fp8.safetensors
很抱歉,根据您提供的错误信息“ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUIaki\ComfyUIakiv1.6\ComfyUI\models\checkpoints\flux1devfp8.safetensors”,暂时无法明确具体的问题原因。可能是模型文件格式不被识别,或者文件路径存在错误等。建议您检查文件的完整性和正确性,确保其符合相关软件的要求。
2025-03-07
comfyui提示词验证异常怎么解决
如果 ComfyUI 提示词验证异常,您可以尝试以下解决方法: 1. 对于翻译失效的问题: 双击“embedded_instail”进行安装。 用记事本打开 BaiduTranslate.py,填入在百度翻译开发平台申请的 ID 和密码,以实现正常翻译。 2. 注意如果想要引用负向 embedding,要确保文件夹路径中没有中文,否则可能导致路径错误。 此外,ComfyUI 本身自带的【clip 文本编码器】对权重的识别可能不够准确,您可以使用插件提供的更高级的编码器,并选择不同的权重插值方式。例如,当从别的网址复制提示词过来效果不一样时,可能是因为 ComfyUI 读不懂提示词中的权重表达。 在模型使用和工作流方面,可能会遇到诸如 inspire 节点安装问题、负向提示词和系数权重的疑问、添加提示词队列报错、工作流的保存和使用、放大图片未显示及节点未跑通、只跑工作流后面一段等问题,相应的解决方法包括更换并加载默认工作流尝试、将随机换成固定等。同时,还包括节点打包操作、报错处理、模型选择及参数设置、快捷键及资源获取等方面的内容。
2025-03-06
comfyUi与webui的区别
ComfyUI 与 WebUI 的区别如下: ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将流程拆分成节点,实现更精准工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 WebUI 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要清晰逻辑。 生态不如 WebUI 丰富,但也有针对其开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 采样器与调度器: 在 ComfyUI 中,采样器与调度器分开,不同于 WebUI 中将两者合并。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,选择 karras 调度器一般效果较好。 插件: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD 在 WebUI 中安装插件能直观看到并使用,因其有良好用户界面;而 ComfyUI 安装插件后可能看不到,需通过节点连接感受其功能,安装方法是将解压好的文件夹放入“E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes”目录,然后重新启动。
2025-03-06
ComfyUI只能在N卡使用?可以在A卡上使用吗
ComfyUI 对电脑硬件有一定要求: 系统:Windows 7 以上。 显卡:推荐使用 NVIDIA 独立显卡且显存至少 4G 起步。不过,mac 系统、AMD 显卡以及低显卡的情况也可以安装使用,但可能存在功能不全、出错率偏高的问题,严重影响使用体验,建议升级设备或者采用云服务器玩耍。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。 运行内存:最低 32GB,越高越好,最低配会经常爆显存。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 甚至没有 GPU,光用 CPU 也可以运行,缺点是速度极慢。 综上所述,ComfyUI 虽然在某些情况下 A 卡也能安装使用,但使用体验可能不佳,一般建议使用 N 卡。
2025-03-06
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更加精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动速度快,出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 生图原理: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI 中的应用:ComfyUI 的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。 扩散过程(Diffusion Process):噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在 ComfyUI 中,这通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。你可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。图中展示的 zT 代表不同时间步长下的潜在表示。在 ComfyUI 中,你可以通过控制步数来影响图像生成的精细度和质量。 延伸应用:开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能。由于是基于 comfyui 开发,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改工作。
2025-03-06
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
我是一个英文CET4级水平的上班族,想要在一年内达成雅思7.5分,请问如何使用AI帮助我实现这个目标。请用简洁易懂的表达,使用项目日程表的形式,将计划分成月度、周和日。
很抱歉,目前没有相关的具体计划内容。但您可以利用一些 AI 工具来辅助学习,比如使用智能语言学习软件,它能根据您的水平制定个性化的学习计划、提供练习题目和模拟测试,并实时评估您的学习进度。您还可以利用 AI 翻译工具,帮助您理解复杂的英语文本。 以下是一个大致的月度、周和日的计划框架供您参考: 月度计划: 第一个月:熟悉雅思考试的题型和要求,通过 AI 工具进行基础评估,制定整体学习策略。 第二个月:重点提升听力和阅读能力,利用 AI 推荐的学习资源进行每日练习。 第三个月:加强写作和口语的训练,使用 AI 批改和模拟对话功能。 第四个月:进行阶段性模拟测试,分析薄弱环节,利用 AI 针对性地强化训练。 第五个月:继续巩固各项能力,增加练习难度和时长。 第六个月:参加真实的雅思模拟考试,根据结果调整学习计划。 第七个月:针对薄弱点进行最后的冲刺训练。 第八个月:进行全面复习,通过 AI 工具进行知识点的查漏补缺。 第九个月:保持练习状态,调整心态。 第十个月:再次进行模拟考试,评估学习效果。 第十一个月:做最后的强化复习和准备。 第十二个月:做好考试的各项准备,保持良好状态迎接考试。 周计划: 每周安排 5 天进行学习,每天至少 2 小时。 每周进行一次小测试,评估本周学习成果。 每周利用 AI 工具分析学习数据,调整下周学习重点。 日计划: 每天早上背诵单词和短语,可使用 AI 记忆辅助工具。 白天工作间隙利用碎片时间进行听力练习。 晚上集中进行阅读、写作和口语的练习。 睡前复习当天学习内容。 请注意,这只是一个初步的框架,您需要根据实际情况和 AI 工具的特点进行具体的调整和优化。祝您学习顺利,早日实现目标!
2024-12-17
Ai短视频比赛主题“什么样的时刻会首先出现在你的脑海中”,请以此主题提出几条优质的创作灵感建议,Ai生成视频要求不长于10秒,请用简单易懂的方式讲一下
以下是关于“什么样的时刻会首先出现在你的脑海中”这一 AI 短视频比赛主题的创作灵感建议: 1. 可以是烟花绽放的那一刻,绚丽多彩照亮夜空。 2. 是宠物与主人重逢相拥的那一刻,充满温馨与感动。 3. 是运动员冲过终点线的那一刻,展现胜利的喜悦。 4. 是孩子第一次学会走路的那一刻,充满成长的惊喜。 5. 是情侣在雨中亲吻的那一刻,浪漫而甜蜜。 比赛相关要求: 1. 主题:以“The Moment”为主题进行创作。 2. 数量限制:每人不限视频数量。 3. 提交时间:12 月 31 日 21:00 前。 4. 参赛文件:16:9 格式,不长于 10 秒,30FPS 以上,不含剪辑。 5. 作业方式:不限。 6. 工具要求:使用可灵 AI(https://kling.kuaishou.com/)。 7. 视频要求:带可灵水印。 8. 参与方式:在指定时间发布作品,可通过通往 AGI 之路首页表格、在野菩萨小红薯群或支持社区提交。 9. 奖项设置:金奖 5000 元+5800 灵感值;银奖 3000 元+2700(2200+500)灵感值;铜奖 2000 元+1000 灵感值;入围 500 元×40;人气奖 2500 元×4 以及其他意外散落的灵感值。 10. 注意事项:不建议出现鲜血、武器、鬼怪骷髅、知名人物、18X 等不符合国家政策的内容,可能导致参赛失败。不在规定时间内提交的自动失去参赛资格。评审由专业评审决定,提交次周发布结果。参与该挑战视作同意将作品的使用权授予本号及第三方用于社群运营、展览、展示、传播、营销等用途,主办方拥有最终解释权。在下面的投稿链接中上传作品。
2024-12-10
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
帮我提交一份最适合企业办公管理人员的中文AI提示词教程,浅显易懂,生动有趣,不超过60分钟的授课时间内容材料
很抱歉,目前没有适合企业办公管理人员的中文 AI 提示词教程相关内容。但我可以为您提供一个大致的框架来创建这样的教程: 一、引言 介绍 AI 提示词的重要性和在企业办公中的应用场景。 二、基础概念 1. 解释什么是 AI 提示词。 2. 举例说明简单的提示词示例。 三、提示词的构建原则 1. 清晰明确 避免模糊和歧义。 具体描述需求。 2. 完整性 包含必要的信息。 不遗漏关键细节。 四、不同场景下的提示词应用 1. 数据分析与报告 如何获取准确的数据分析结果。 生成清晰的报告提示词技巧。 2. 项目管理 安排任务和跟踪进度的提示词。 协调团队的有效提示词。 3. 客户服务 快速解决客户问题的提示词。 提供满意答复的提示词要点。 五、实践与练习 让学员自己尝试构建提示词,并进行分享和讨论。 六、总结 回顾重点内容,鼓励学员在实际工作中应用。 您可以根据以上框架,结合具体的案例和生动的语言,来丰富和完善这份教程,使其满足您的需求。
2024-09-09
帮我提交一份最适合企业办公管理人员的AI提示词教程,浅显易懂,生动有趣,不超过60分钟的授课时间内容材料
以下是为企业办公管理人员准备的一份 AI 提示词教程,预计授课时间不超过 60 分钟,内容浅显易懂、生动有趣: 一、什么是 prompt(提示词) 为什么 prompt 又被称之为咒语,而使用 AI 的人被称之为魔法师呢?通过本部分的学习,您将明白其中的道理,并能迅速入门 prompt 的使用,达到一般公司设计岗所需的 AI 绘图水准。 建议:打开任意一款 SD 产品分屏对照使用。 二、人机协作 在短短 45 分钟的课堂中,您将了解到人机协作的重要性。比如通过兔龟的例子,您会明白在绘图提示词中,要清晰表达、给出具体描述。为了教垫图技巧,还会给出让兔龟站起来却失败的例子。 三、与 AI 对话迭代 不管是和 AI 脑洞机一起设计新生物,还是写歌词,您需要在和 AI 对话的过程中把自己的偏好告诉它。通过几次迭代,您将学会如何更好地与 AI 交流。 四、要有自己的判断 AI 可能会胡说八道,因此人类不能无脑依赖 AI。面对 AI 给的答案要多思考“它说得对吗”,多参考相关信息,避免被带偏。例如改良版荔枝瓢虫的故事,能让您记住人类得有自己的判断。 如果您在学习过程中有任何觉得不够清晰的地方,请在评论区留言,或者添加微信 designurlife1st 直接沟通(记得备注来意:ai 绘图交流)。
2024-09-09
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08
chatbot对话和AI搜索区别
Chatbot 对话和 AI 搜索存在以下区别: 1. 产品形态: Chatbot 主要交互是一个对话框+RAG 联网检索,如 ChatGPT、Kimi Chat 等。这类产品依赖大模型的理解能力提供问答服务,RAG 检索作为补充手段,弥补大模型在实时信息获取方面的不足。 AI 搜索产品主要交互是一个搜索框+搜索详情页,如 Perplexity、秘塔等。这类产品主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求,而对话(Chat)则作为补充步骤,方便用户对检索结果进行追问或二次检索。 2. 市场定位: 大部分产品聚焦在国内,如大模型厂商推出的 ChatBot 产品(智谱清言、Kimi Chat、百小应、海螺 AI 等),搜索厂商或创业团队推出的 AI 搜索产品(360 AI 搜索、秘塔、博查 AI、Miku 等)。 海外也有很多成熟的和新出的泛 AI 搜索产品(Perplexity、You、Phind 等),中国公司和团队也有面向全球市场的出海产品(ThinkAny、GenSpark、Devv 等)。市场定位的选择跟创始团队的背景或认知有关。 3. 搜索类型: 通用搜索:没有明显的受众倾向,任何人可以搜任何问题,都能得到一个相对还不错的搜索结果,如 Perplexity、ThinkAny。 垂直搜索:面向特定的人群或特定的领域,对特定的信息源做索引和优化,在某类问题的搜索上会有更好的结果,如 Devv 主要面向开发者人群,问编程相关的问题,搜索结果和回复准确度都比较高,问旅游或其他类型的问题,回答质量则不如通用搜索。 目前存在能联网检索的 AI,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些 AI 搜索工具的出现标志着在信息检索领域的一个重要发展,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-07
DeepSeek R1和DeepSeek(联网版)有什么区别
DeepSeek R1 和 DeepSeek(联网版)的区别主要在于以下方面: 1. DeepSeek 只是品牌名称,需要加上具体模型名,如 DeepSeek V3 (类似 GPT4o)或 DeepSeek R1 (类似 OpenAI o1)。 2. DeepSeek R1 是原生通过强化学习训练出的模型,而 DeepSeek 联网版的具体特点未明确提及,但可能在功能和性能上与 R1 存在差异。 3. Deep Research 更擅长生成专业报告,而 DeepSeek Chat 虽然集成搜索,但效果仍有差距。
2025-03-05
AI与智能体的区别
AI 与智能体的区别主要体现在以下方面: 1. 架构和功能:未来的完全自主智能体可能拥有所有四个构建块,但当前的 LLM 应用程序和智能体尚未达到此水平。例如,流行的 RAG 架构不是智能体式的,而是以推理和外部记忆为基础。一些设计如 OpenAI 的结构化输出支持工具使用,但这些应用程序将 LLM 作为语义搜索、综合或生成的“工具”,其采取的步骤由代码预先确定。而智能体是将 LLM 置于应用程序的控制流中,让其动态决定要采取的行动、使用的工具以及如何解释和响应输入。 2. 控制自由度和类型:在 Menlo,确定了三种不同主要用例和应用程序进程控制自由度的智能体类型。受到最严格限制的是“决策智能体”设计,它们使用语言模型来遍历预定义的决策树。“轨道智能体”提供了更大的自由度,为智能体配备了更高层次的目标,但同时限制了解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。在光谱的另一端是“通用人工智能体”,本质上是没有任何数据支架的 for 循环,完全依赖于语言模型的推理能力来进行所有的计划、反思和纠正。 3. 概念理解:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,所以很多公司关注 AI 应用层的产品机会。在 C 端和 B 端都有相关案例,同时也有众多智能体开发平台。
2025-03-01
aI 智能体和大模型的区别是什么
AI 智能体和大模型的区别主要体现在以下几个方面: 1. 概念和定位:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。大模型是一种技术。 2. 服务对象:大模型是技术,面向用户提供服务的是基于大模型的产品,如智能体。 3. 功能特点:大模型具有强大的语言理解和生成能力,但存在局限性,如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。智能体通过集成特定的外部能力,能够弥补大模型的不足,例如实时信息获取、回答私有领域问题等。 4. 应用场景:智能体在 C 端有社交方向,用户注册后捏自己的 Agent 并让其与他人的 Agent 聊天;在 B 端可以帮助商家搭建 Agent。大模型适用于通用的语言处理任务。 5. 开发方式:有专门的智能体开发平台,如字节扣子、腾讯元器等。
2025-02-28