Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

本地编程辅助大模型,推荐用哪些插件和基座模型

Answer

以下是为您推荐的一些用于本地编程辅助的插件和基座模型:

  1. 插件:
    • OpenRouter:新发布的 BYOK 功能,可集成 xAI、OpenAI、Mistral 等数十个平台的 Key,能同时使用其他平台和 OpenRouter 的免费额度。目前支持白“赚”的平台包括 AI Studio、Cohere、DeepSeek、Mistral、SambaNova、Together、xAI 等。
    • simple-one-api:若对国产大模型支持有需求,熟悉代码的可通过本地或 Docker 启动。
  2. 基座模型:
    • 推理模型:o1、gemini-2.0-flash-thinking
    • 代码模型:claude-3.5-sonet(性能强)、gpt-4o-mini(价格友好)
    • 多模态模型:gemini-2.0-flash
    • 常规模型:DeepSeek V3
    • 开源中文大语言模型:

此外,对于 SDXL 的本地部署,大模型分为 base+refiner 和配套的 VAE 模型两部分。base 是基础模型用于文生图操作,refiner 用于细化生成的模型以获得更丰富的细节,VAE 用于调节图片效果和色彩。要在 webUI 中使用,需将 webUI 版本升级到 1.5 以上,并将模型放入对应文件夹。

Content generated by AI large model, please carefully verify (powered by aily)

References

4款插件2个API,我把Cursor“迭代”成了满血超频版程序员

这就要先提到API大户OpenRouter新发布的功能:BYOK(Bring Your Own API Keys)简单来说是个第三方Key集成功能,将xAI、OpenAI、Mistral等数十个平台的Key集中在一起。跟其他的集成项目最大的不同是可以同时使用其他平台和OpenRouter的额度。以gemini-2.0-flash为例,相当于可以同时使用OpenRouter和AI Studio的免费额度。目前支持白“赚”的平台:AI Studio/Cohere/DeepSeek/Mistral/SambaNova/Together/xAI模型太多也不是好事,虽然有快捷键,但编程过程中还是需要人脑判断用哪个模型,我理想的配置应该是:推理模型:o1、gemini-2.0-flash-thinking代码模型:claude-3.5-sonet(还是太能打了)、gpt-4o-mini(价格友好)多模态模型:gemini-2.0-flash常规模型:DeepSeek V3使用OpenRouter集成API Key的好处不仅是整合了免费额度,还解放了更多的槽位。毕竟在Cursor的设置里,deepseek就会跟gpt的配置发生冲突。也就是说虽然我有十几个key,但是我同一时间最多只能使用4个类型的模型。当然,如果觉得这些供应商支持的模型还不够,特别是对国产大模型支持比较少的话,我们还可以使用上古真神:simple-one-api不过simple-one-api不像openrouter,支持直接在线配置多个Key。熟悉代码的可以通过本地或者Docker启动。如果你想跟我一样,在其他环境也想用到配置好的大模型们,我觉得可以试试看Zeabu r:

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!

LLM开源中文大语言模型及数据集集合

Fengshenbang-LM:地址:[https://github.com/IDEA-CCNL/Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)简介:Fengshenbang-LM(封神榜大模型)是IDEA研究院认知计算与自然语言研究中心主导的大模型开源体系,该项目开源了姜子牙通用大模型V1,是基于LLaMa的130亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。除姜子牙系列模型之外,该项目还开源了太乙、二郎神系列等模型。BiLLa:地址:[https://github.com/Neutralzz/BiLLa](https://github.com/Neutralzz/BiLLa)简介:该项目开源了推理能力增强的中英双语LLaMA模型。模型的主要特性有:较大提升LLaMA的中文理解能力,并尽可能减少对原始LLaMA英文能力的损伤;训练过程增加较多的任务型数据,利用ChatGPT生成解析,强化模型理解任务求解逻辑;全量参数更新,追求更好的生成效果。Moss:地址:[https://github.com/OpenLMLab/MOSS](https://github.com/OpenLMLab/MOSS)简介:支持中英双语和多种插件的开源对话语言模型,MOSS基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。

Others are asking
国内主流的大语言模型公司有哪几家
国内主流的大语言模型公司主要有以下几家: 1. 百度:其文心一言大语言模型可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成等。 2. 阿里巴巴:拥有通义大模型。 3. 北京智源人工智能研究院:推出了“悟道・天鹰”,是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。
2025-03-20
国内的大语言模型清单
以下是一些国内的大语言模型: 1. 文心一言:可用于文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成等。 2. 讯飞星火:通用模型,处理自然语言。 3. “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 此外,如果想了解国内大模型的效果,可以参考第三方基准评测报告:
2025-03-20
列出国内的所有大模型
以下是国内的部分大模型: 北京企业机构: 百度:文心一言,https://wenxin.baidu.com 抖音:云雀大模型,https://www.doubao.com 智谱 AI:GLM 大模型,https://chatglm.cn 中科院:紫东太初大模型,https://xihe.mindspore.cn 百川智能:百川大模型,https://www.baichuanai.com/ 上海企业机构: 商汤:日日新大模型,https://www.sensetime.com/ MiniMax:ABAB 大模型,https://api.minimax.chat 上海人工智能实验室:书生通用大模型,https://internai.org.cn 其他地区: 阿里通义千问、360 智脑、讯飞星火等不在首批获批名单中。 广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 此外,通义千问的 Qwen 系列在 LMSys 榜单中表现出色,其开源模型受欢迎,累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用。大模型的竞争涉及芯片、云计算、闭源模型、开源模型、开源生态等,基础大模型决定产业智能化的天花板等,开源生态也至关重要。
2025-03-20
科学计算大模型的代表模型有哪些
科学计算大模型的代表模型主要有以下几种: 1. Encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,最知名的代表是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表模型如谷歌的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此结构,包括 ChatGPT。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在数字化处理中,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。当神经元数量达到百亿、千亿级别时,会出现群体智能,即智能涌现,这在自然界如蚂蚁群体中有典型体现,人脑也由约 1000 亿个神经元构成复杂神经网络。
2025-03-20
视觉大模型的代表模型有哪些
以下是一些视觉大模型的代表模型: 1. Flamingo:一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到 MM 领域,引入新型开源 MM 指令跟踪数据集及基准 LLaVABench 以解决数据稀缺问题。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,复制 GPT4 的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含 OwlEval 教学评估数据集。 6. XLLM:扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准。 8. Sora:符合视觉模型的规模化定律,是第一个展示确认新兴能力的视觉模型,包括遵循指令、视觉提示工程和视频理解等功能,能够根据人类指令生成长达一分钟的视频。 9. CLIP:开创性的视觉语言模型,将变压器架构与视觉元素结合,能在多模态生成框架中充当图像编码器。 10. Stable Diffusion:多才多艺的文本到图像 AI 模型,采用变压器架构和潜在扩散技术生成各种风格的图像。
2025-03-20
我想从Nanobrowser里植入DeepSeek的R1模型,来让它帮我做网页搜索之类的工作,我该怎么做,给出详细教程
以下是从 Nanobrowser 里植入 DeepSeek 的 R1 模型来进行网页搜索的详细教程: 1. 阿里云百炼平台相关: 模型广场:百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 无需部署:百炼平台无需部署,可直接使用 Deepseek R1 模型。 价格与免费额度:Deepseek R1 模型价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 授权与实名认证:使用 Deepseek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 模型效果对比:在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态能力:多模态可以识别更多输入信息,如读文件、图片等,而 Deepseek R1 本身不是多模态模型。 连接 Chat Box:通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。 API key 重置:可删除旧的 API key 并重新创建,方便本地软件连接。 2. 工作流创建: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek(即火山方舟里配置的 DeepSeek R1 模型),输入包括搜索结果(选择搜索节点 data 下的 webPages)和开始节点的 USER_INPUT,开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮,系统提示词不需要输入,用户提示词为空。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。测试完成后,直接发布工作流。 3. 网页聊天相关: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL 为 https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 打开联网功能,支持联网搜索使用 R1。
2025-03-20
怎么搭建扣子智能体提取抖音文案并进行改写用到哪些插件,并给我配置参数与步骤图
以下是搭建扣子智能体提取抖音文案并进行改写所需的插件、配置参数及步骤: 1. 插件搭建: 点击个人空间,选择插件,点击创建插件。 插件名称:使用中文,根据需求起名。 插件描述:说明插件的用途和使用方法。 插件工具创建方式:选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具,填写工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以“/”开始,若使用 path 方式传参,用“{}”包裹变量)、请求方法等,结束后点击保存并继续。 2. 配置输入参数: 点击新增参数,填写所有需要使用的参数,保存并继续。 3. 配置输出参数: 如果一切填写正确,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 填入汉字“张”,点击自动解析。 解析成功后显示解析成功,可看到输出参数已填好,然后点击保存并继续。 4. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,安仔使用 Coze 免费创建 24 小时英语陪练的步骤包括: 1. 打开扣子首页,点击左上角创建 AI Bot 按钮。 2. 在弹窗输入 Bot 相关信息。 3. 设计人设与回复逻辑,根据功能需求设计提示词。 4. 调整模型设置,如改为 20 轮对话记录。 5. 选择使用插件,如英文名言警句、Simple OCR 等。 6. 设置开场白和预置问题。 7. 设置语音,选择亲切的英语音色。
2025-03-18
我需要自己搭一个ai自动剪辑视频的插件
以下是搭建 AI 自动剪辑视频插件的详细步骤: 一、开通服务 1. 先获取搭建完成后需要用到的各种模型的 key。 首先注册火山引擎:https://volcengine.com/L/4lZ8oszvY20/ ,邀请码:KL9ZC1IF 。这个项目会使用到不少 Token,刚好火山现在还有赠送 Token 的活动,若未注册,使用此邀请码和链接注册可获得 375 万的 Token。 开通各项服务和拿到各个服务的 Key: 获取 LLM_ENDPOINT_ID、VLM_ENDPOINT_ID、CGT_ENDPOINT_ID、ARK_API_KEY 。注册后点击:控制台,进入火山方舟控制台(https://console.volcengine.com/ark/region:ark+cnbeijing/model?vendor=Bytedance&view=LIST_VIEW)。创建一个接入点,点击在线推理创建推理接入点。命名并选择 Doubaopro32k 模型。重复此步骤创建 Doubaovisionpro32k、Doubao视频生成模型这两个推理点。创建完成后,复制推理点的 ID 并对应填入相应位置。然后继续点击“API key 管理”创建一个并复制下来,这就是 ARK_API_KEY 。 获取 TOS_BUCKET 。 二、服务部署 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole 。 2. 根据以下配置购买即可。 3. 购买并付款完成后,回到服务器“控制台”。 4. 点击服务器卡片的空白处,去添加防火墙。按照如下方式添加:8887、8080 端口,点击确定即可。 5. 点击右上角的“登录”按钮,扫码验证后,看到一个命令行窗口。下边出现代码,复制的时候,注意复制全。代码已分好步骤,每次只需要复制粘贴一行,然后点击一次回车。回车后,只有最左边显示中括号对话前缀时,不要操作。若 ctrl+v 粘贴不进去,试试 shift+ctrl+v 粘贴。 6. 在命令行中,一条一条输入: echo\"8887\">/www/server/panel/data/port.pl sudo kill9$ sudo/etc/init.d/bt default 7. 保存并打开你的外网面板地址,输入账号和密码。 8. 选择已有账号登录,然后会有一个账号绑定页,这个是宝塔的账号,如有就直接登录,没有就去注册一个。注意,注册完成之后,要返回原页面登录!不要停留在宝塔的注册功能页。 9. 直接关掉推荐,来到文件。点击根目录,打开 home 文件。 10. 点击:文件目录上方的“终端”,出现下方窗口。 11. 粘贴输入:git clone https://github.com/volcengine/aiapplab.git 。 12. 然后关闭终端窗口,刷新一下会看到有一个 aiapplab 文件夹,打开文件夹找到 demohouse/chat2cartoon 文件夹,看到有一个“.env”。 13. 然后把提前准备的那些 key 和 token,对应的粘贴进去。 14. 粘贴完成之后,继续进入 backend 文件夹,然后打开“终端”输入以下命令: python3 m venv.venv source.venv/bin/activate pip install poetry==1.6.1 poetry install poetry run python index.py 15. 依次完成后,会如下图所示,看到下图到后端就启动成功了,把这个页面保持如下,不要关掉页面。保持这个终端是打开的。 16. 重新复制打开一个新的浏览器标签页面。返回上级文件夹,进入/home/aiapplab/demohouse/chat2cartoon/frontend/src/routes 。
2025-03-17
写一个可以对接金蝶云之家OA的插件,可以识别上传的发票与之前发票是否有重复提交的情况?
目前没有关于如何编写对接金蝶云之家 OA 并实现识别上传发票是否重复提交的具体内容。但一般来说,要实现这样的插件,您可能需要以下步骤: 1. 了解金蝶云之家 OA 的接口和数据格式规范,以便能够与之进行有效的交互。 2. 建立发票数据的存储和管理机制,用于保存已上传的发票信息。 3. 设计发票识别的算法和逻辑,能够提取发票的关键特征,如发票号码、日期、金额等。 4. 对比新上传发票的特征与已存储发票的特征,判断是否存在重复。 这是一个较为复杂的开发任务,可能需要涉及到软件开发、数据库管理、算法设计等多方面的知识和技术。
2025-03-13
编程插件和编程IDE的区别
编程插件和编程 IDE 主要有以下区别: 1. 代码补全方式:编程插件的补全通常局限于向后追加,而像 Trae 这样的 AI 原生 IDE 可以删除代码,进行多行全方位的自动补全。 2. 工作能力:AI 原生 IDE 如 Trae 具备 Agent 的能力,在无须人工干预的情况下,可以完成代码生成、调试、程序运行等一系列工作。而编程插件可能需要更多的人工参与。 3. 用户习惯改变难度:工程师往往有自己习惯使用的 IDE,新的编程 IDE 想迅速改变工程师的习惯较难,而插件的方式可以让工程师先低成本地用起来。 4. 功能集成度:编程 IDE 通常是一个完整的开发环境,提供了更全面的功能和优化,如 IntelliJ 为 Java 程序员做了很多细微的优化。而插件则是在原有 IDE 的基础上增加特定的功能。 例如,在 Coze IDE 中可以借助 AI 轻松创建插件,创建后需发布才能被 Bot 使用。在 Cursor 中,可通过官网下载安装,通过调起 AI 对话输入需求实现功能,在使用过程中不断追问完善需求,遇到问题可随时向其咨询。
2025-03-12
AnimateDiff插件下载
AnimateDiff 插件的下载地址如下: 运动模块:https://huggingface.co/guoyww/animatediff/tree/cd71ae134a27ec6008b968d6419952b0c0494cf2 模型下载:https://huggingface.co/Kijai/MagicTimemergedfp16 安装地址:D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 模型位置:下载对应的模型并存放在指定位置并重命名,文件夹位置如果没有此文件需要新建并重命名,具体如下: D:\\ComfyUI\\custom_nodes\\ComfyUIAnimateDiffEvolved\\models D:\\ComfyUI\\custom_nodes\\ComfyUIAnimateDiffEvolved\\motion_lora 推荐工作流: file:h264mp4.json file:h265mp4.json file:webm.json file:av1webm.json file:1.5 文生视频工作流.json
2025-03-11
好用的office ai插件有哪些
以下是一些好用的 Office AI 插件: 1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还有一些其他平台的插件,如 Coze 平台提供的丰富插件,涵盖搜索引擎、文本分析、图像识别等领域,包括必应搜索、LinkReader 等。同时,像“核心搭子小组:爸妈防骗助手”使用的工具及插件中,也有一些相关的,如 Moonshot、JinaWebReader 等。 内容由 AI 大模型生成,请仔细甄别。
2025-03-04
我想学AI编程,用的电脑系统是WIN7,好多编程软件装不了吧,给我个建议
如果您使用的是 WIN7 系统且想学习 AI 编程,由于很多编程软件可能不支持该系统,以下是一些建议: 1. 考虑升级您的操作系统至 Windows7 以上版本,如 Windows10 或 Windows11,以获得更好的兼容性和支持。 2. 对于电脑硬件,系统要求 Windows7 以上,显卡要求为 NVDIA 独立显卡且显存至少 4G 起步,硬盘需留有足够的空间,最低 100G 起步(包括模型)。 3. 下载并更新 Nvidia 显卡驱动,下载地址:https://www.nvidia.cn/ geforce/drivers/ 4. 下载并安装所需环境,包括 Python、Git、VSCode: 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 安装 Git:https://gitscm.com/download/win 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 请注意,Mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但可能功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2025-03-20
AI 编程如何学
以下是关于学习 AI 编程的一些建议: 1. 借助 AI 学习编程的关键: 打通学习与反馈循环,从“理解→实践→问题解决→加深理解”的循环入手。以 Hello World 为起点,验证环境、建立信心、理解基本概念。 建议使用流行语言和框架,如 React、Next.js、TailwindCSS。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题时采取三步走:复现、精确描述、回滚。同时要记住,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。 2. 团队开发中的应用与人才需求: 在大企业中激进团队 AI 编程占比达百分之八九十,初创团队中前端比重较低,后端约占百分之三四十。 解决设计开发差距,如 idob 等在努力解决从 Figma 到前端过程中让 AI 无损编写的问题。 面向用户的产品对前端 UI 和交互体验要求高,需中高级工程师花时间打磨细节。未来人才需具备审美、品味、管理能力、工程思维和解决问题能力。 3. 代码学习方式: 推荐用 AI 工具实践学习,在感兴趣的项目中学会代码。 注意 AI 编程的问题,如上下文不够会导致出错,需人辅助处理上下文,看懂代码才能更好掌控。 4. 课程学习: 例如“和 Cursor AI 一起学 Python 编程”课程,第一节包括熟悉 Cursor 界面,安装和设置,指导下载安装 Cursor 编辑器,了解界面布局和基本功能,编写第一个程序,使用 Cursor 编写一个打印“你好,世界!”的简单程序,体验 AI 辅助功能,如代码自动补全和错误提示,使用 Bohrium 进行远程编程,注册和登录,帮助注册 Bohrium 账户并登录在线编程平台,在线编写和运行代码,在 Bohrium 上编写同样的“你好,世界!”程序,演示如何在云端运行代码并查看输出。教学目标是了解 Python 对于人文学科的意义,掌握 Cursor 和 Jupyter Notebook 编程环境的基本使用,能够在本地和云端运行简单的 Python 代码,体验 AI 技术如何辅助编程和学习。 相关原文链接:
2025-03-20
目前国内不需要翻墙的AI编程开发工具有哪些
目前国内不需要翻墙的 AI 编程开发工具主要有以下几种: 1. Trae 国内版:这是字节跳动旗下的国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型,具有国内用户友好、使用完全免费、内置预览插件等特性,网址为 Trae.com.cn。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供多种编程辅助能力。 3. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 此外,还有一些其他的相关工具,如 GitHub Copilot(需注意可能存在使用限制)、CodeWhisperer、CodeGeeX、Cody、Codeium 等,但这些工具的使用情况可能因地区和具体场景有所不同。您可以根据自身需求选择最适合的工具。更多辅助编程 AI 产品,还可以查看 https://www.waytoagi.com/category/65 。
2025-03-20
写编程代码用哪个AI
以下是一些可以用于写编程代码的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 此外,还有一些相关的学习资源和平台: 1. 《雪梅 May 的 AI 学习日记》中提到的用 AI 写代码的相关内容,包括: 、AI 写小游戏平台:https://poe.com/ 、图片网站:https://imgur.com/ 、改 bug 的网站:https://v0.dev/chat 、国内小游戏发布平台:https://open.4399.cn/console/ 。 2. 关于 python 安装 FittenAI 编程助手的内容,可参考:作者: 。安装步骤包括点击左上角的 FileSettingsPluginsMarketplace ,注册登录后即可使用。其具有智能补全、AI 问答、自动生成代码、代码转换等功能。
2025-03-19
AI编程的课程有吗
以下是为您提供的 AI 编程相关课程: 1. Build on Trae AI 编程挑战: 从 0 开始,用 AI 助手陪您突破编程瓶颈,让每个人都能轻松掌握编程技能,一起打造属于自己的作品。 全勤奖:参与作业提交即可获得社区精心准备的奖品。 课程安排: 2 月 18 日 20:00 开始,AI 编程大咖对谈,,分享人 Super 黄 Eric,无作业要求。 2 月 19 日 20:00 开始,AI 编程训练营环境准备,分享人 super 黄。 2 月 20 日 20:00 开始。 2 月 21 日 20:00 开始。 2 月 22 日 20:00 开始。 课程预约: 历史课程、共学作业提交。 2. 3 月 22 日 AIPO 校园创投活动 AI 编程闪电秀: 由 AI 开源社区联合组织。 3 月 13 日和 19 日,晚 8 点从 0 到 1 线上共学,文科生也可以用 Trae 做应用。 3 月 22 日,下午 50+所高校线下项目路演。 3 月 24 日,晚 8 点全国精选高校项目线上展示。 双重认证加持: 参与线上课程,获得 WaytoAGI x Trae AI 编程结业证书。 参与线下路演,角逐最佳创业者/投资人证书。 报名链接:https://waytoagi.feishu.cn/share/base/form/shrcnodT7ssTzaUNHzY7beyR2tf 欢迎各个高校同学进群交流,获取《AI 编程第一课》全套十节课图文视频资料。 3 月 13 日直播回放: 3. 第三节|AI 编程从入门到精通 Build on Trae 2025 年 2 月 22 日: 智能章节: AI 活动交流:报名、时间、内容及工具使用探讨。 AI 编程课程 10 节内容介绍及相关技术讲解。 AI 编程活动介绍与演示安排,含比赛规则及奖品。
2025-03-19
请推荐一个中文版的AI编程助手以及编程工具
以下为您推荐一些中文版的 AI 编程助手及编程工具: 1. AIXcoder:是 AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言,提供自动任务处理、智能代码补全等功能,目前只有中文版,价格暂无信息。 2. Windsurf:提出了 Agent IDE 这种新的开发范式,Cascade 功能对应 Cursor Composer,在体验上有提升,包括深入理解现有代码库等,但有程序员反馈其 tab 自动补全不如 Cursor。 希望这些推荐对您有所帮助。
2025-03-18
什么是基座模型
基座模型是在自然语言处理领域中具有重要地位的模型。 例如,GLM(General Language Model)是清华提出的基座模型,属于Prefix LM方式。其出发点是希望能同时在3种NLP任务上达到最优,同时不想引入原始encoderdecoder成倍的计算量代价。具体做法是先用双向网络encoder对题干(prompt)审题,然后通过decoderonly的方式把题干中位置做展开作答。 此外,还有一些开源的基座模型,如: 1. CPMBee:一个完全开源、允许商用的百亿参数中英文基座模型。采用Transformer自回归架构,在超万亿高质量语料上进行预训练,拥有强大的基础能力。 2. TigerBot:一个多语言多任务的大规模语言模型,开源了包括模型:TigerBot7B、TigerBot7Bbase、TigerBot180B,基本训练和推理代码,100G预训练数据,涵盖金融、法律、百科的领域数据以及API等。 3. 书生·浦语:由商汤科技、上海AI实验室联合香港中文大学、复旦大学和上海交通大学发布的千亿级参数大语言模型,具有1040亿参数,基于“包含1.6万亿token的多语种高质量数据集”训练而成。 在一些应用中,如Kolors,会选择直接使用大语言模型如ChatGLM6BBase作为文本编码的基座模型。
2024-12-27