Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

编程插件和编程IDE的区别

Answer

编程插件和编程 IDE 主要有以下区别:

  1. 代码补全方式:编程插件的补全通常局限于向后追加,而像 Trae 这样的 AI 原生 IDE 可以删除代码,进行多行全方位的自动补全。
  2. 工作能力:AI 原生 IDE 如 Trae 具备 Agent 的能力,在无须人工干预的情况下,可以完成代码生成、调试、程序运行等一系列工作。而编程插件可能需要更多的人工参与。
  3. 用户习惯改变难度:工程师往往有自己习惯使用的 IDE,新的编程 IDE 想迅速改变工程师的习惯较难,而插件的方式可以让工程师先低成本地用起来。
  4. 功能集成度:编程 IDE 通常是一个完整的开发环境,提供了更全面的功能和优化,如 IntelliJ 为 Java 程序员做了很多细微的优化。而插件则是在原有 IDE 的基础上增加特定的功能。

例如,在 Coze IDE 中可以借助 AI 轻松创建插件,创建后需发布才能被 Bot 使用。在 Cursor 中,可通过官网下载安装,通过调起 AI 对话输入需求实现功能,在使用过程中不断追问完善需求,遇到问题可随时向其咨询。

Content generated by AI large model, please carefully verify (powered by aily)

References

不吹不黑,聊聊字节新发布的 AI 原生 IDE

周一,上班路上看到字节跳动发布Trae国内版,这是中国首款AI原生的IDE,到了公司我第一时间下载体验。这两天,很多博主已经写了教程,所以今天我就不再冗长的给你介绍怎么使用Trae的功能。实际上,如果你是一个工程师,那类似的工具几乎没有什么上手门槛。今天我想不吹不黑客观的和你聊聊Trae。相比IDE插件类的AI代码助手,像Trae这样AI原生的IDE有两个跨越式的突破:第一,它的补全不会只局限于向后追加,而是可以删除代码,多行全方位的自动补全。第二,它具备Agent的能力,无须人工干预的情况下,可以完成代码生成、代码调试、程序运行等一系列的工作。去年五月,我曾经和国内几个主要的AI代码助手的负责人聊过天,当时大家看到了AI编程的机会,并且都立志想做AI原生的IDE。但路径上,他们都选择了先从IDE插件切入。原因也很简单,工程师有自己钟爱的IDE,这就和关羽的青龙偃月刀一样,这么多年,已经用习惯了,你让他换个其它兵器,可能还会影响发挥。另外,像IntelliJ,这些年来日积月累,为Java程序员做了非常多细微的优化。一个新的编辑器想迅速改变工程师的习惯,没那么容易,而插件的方式可以让工程师先低成本地用起来,让大家先尝到甜头。这是当时的判断。后来,Cursor横空出世,它很快成为搅动市场的鲶鱼。很多工程师被Cursor的创新折服。包括我也是,记得第一次用它的Composer功能时,激动地喊了出来:原来还可以这么玩。很明显,从八月开始,用户的心智也在变化。毕竟用户见过更好的产品之后,就很难再习惯老旧的体验。

使用 Coze IDE 创建插件

在Coze IDE中,您可以借助AI轻松创建插件,无需关心开发环境。创建插件后,必须发布插件才可以被Bot使用。Coze IDE是扣子提供的在线编码和运行环境,允许您在多种技术栈中创建插件。待插件发布后,IDE会帮助您托管运行代码,您无需关心环境配置、服务部署等步骤。此外,您可以使用IDE内置的AI助手获取代码方面的帮助,包括生成代码、修改代码、解释代码和添加注释。在个人空间下创建的插件,仅能被个人调用。在团队空间下创建的插件,能被团队成员调用。插件发布了新版本后,使用了这个插件的Bot会自动使用发布的最新版本。

Cursor小白速通:成为赤脚程序员

打开Cursor的官网:[https://www.cursor.com](https://www.cursor.com),点击download进行下载和安装。亲测,不用魔法上网也可以访问。[heading2]3.2、实现简单需求[content]安装之后,打开之后发现和其他的编程IDE页面很像,这个时候我们可以通过commd+L调起AI对话,输入你的需求或想实现的效果。整体的页面构成是左侧是代码文件、右侧是提示对话框。我们可以提前创建一个文件,这样就可以点击对话框的代码块旁的”Apply“、”Accept“将代码保存在左侧文件里。如果不知道如何运行它,也不用担心,一般对话框里都会明确告诉使用方法,不清楚或报错了继续追问就行。在最右侧的图我们看到,这个浏览器插件的功能已经成功了。我们还可以在这个基础上继续修改,比如希望可以拖动,颜色更美观、显示分钟等,只要在对话框里表达你的需求,然后对着生成的代码块点击“Apply”→“Accept”、保存文件、验证测试就行了。[heading2]3.3、Tips小结[content]完成了一个小需求,我们来做个小结。在对话框里不断追问,一步一步完善需求;比如这个展示页面时长的插件,先看到展示,再对展示的样式等进行优化对话时,可以@本地代码文件进行问答,可以得到更精准的回答可以本地存一份需求说明文档(这个也可以让它帮你生成),在迭代过程中,可以随时让它查阅遇到任何报错、不理解的地方,都可以截图或复制后在对话框里丢给它,可以要求它对细节操作进行解答,直到验证成功为止不要有面对代码的恐惧,代码只是工具,可以从非常简单的小需求开始练手,使用熟悉之后会和它配合越来越顺畅

Others are asking
我现在正在使用fedora操作系统,日常场景是办公、学习、娱乐和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上使用的 AI 工具,可满足您办公、学习、娱乐和简单编程的日常场景需求: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 以上工具都可以帮助您提高编程效率,但是每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
我现在正在使用fedora操作系统,日常场景是办公、学习和一些简单的编程。有哪些ai工具适合我
以下是一些适合您在 Fedora 操作系统上用于办公、学习和简单编程场景的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。希望这些信息对您有所帮助!
2025-03-12
职场打工人,没有编程基础。怎么在3个月内学习运用好ai?并列出详细计划
以下是为没有编程基础的职场打工人制定的在 3 个月内学习运用好 AI 的详细计划: 第一个月: 了解 AI 编程的基本概念和应用场景,通过相关文章和案例建立初步认知。 借助 AI 工具完成一些简单的任务,例如使用一些现有的 AI 插件来辅助工作,如 IAiUse Language Translator Settings、i18n Nexus 等。 第二个月: 学习 Python 基础,包括基本语法规则(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)。 掌握函数的定义和调用,理解参数和返回值的概念,以及作用域和命名空间。 第三个月: 深入学习 Python 的模块和包,学会导入标准库中的模块和第三方库,以及使用包来扩展程序功能。 了解面向对象编程的基本概念,包括类和对象、属性和方法、继承和多态。 学习异常处理,理解异常的工作原理,掌握使用 try 和 except 语句处理错误。 掌握文件操作,包括文件读写、文件与路径操作。 在学习过程中,要多实践、多练习,结合实际工作中的需求进行应用,不断提升自己运用 AI 的能力。
2025-03-11
trae ai编程客户端的buide模式“客户端异常,请稍后再试”
Trae 的 Builder 模式相关信息如下: Trae 提供了两种模式,其中 Builder 模式可以帮助从 0 开发一个完整的项目,对代码文件的任何更改都会自动保存。 使用 Builder 模式的步骤: 在电脑上新建一个文件夹,文件夹名字可自定义,如“helloworld”。 使用 Trae 打开这个文件夹,在弹出的弹层里选中新建的文件夹。 点击右上角的“Builder”按钮切换到 Builder 模式。 在 Builder 模式下的使用案例,如生成一个贪吃蛇游戏:打开 Builder 模式,直接输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写过程,期间需要手动接入进行文件审查,在提示中点击“全部接受”。代码生成完成之后,Trae 自动运行命令启动页面,点击运行,在 Webview 中即可看到实现的游戏效果。 如果您在使用 Trae 的 Builder 模式时出现“客户端异常,请稍后再试”的提示,建议您稍后再尝试操作,或者检查网络连接等是否正常。
2025-03-10
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有国内用户友好、使用完全免费、内置预览插件等特性。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 使用流行语言和框架,先运行再优化,小步迭代,借助 AI 生成代码后请求注释或解释,遇到问题三步走:复现、精确描述、回滚。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-09
有没有ai编程的AI rules
目前关于 AI 编程的 AI Rules 主要有以下内容: 在字节发布的全新 AI IDE Trae 中,由于其过于智能,有时难以控制其立即执行任务,且目前没有全局 AI Rules 的设置,需要用“”来引入规则。 在进行 AI 编程时,应遵循一定的准则。例如,能不编程尽量不编,优先寻找线上工具、插件、本地应用等现成的解决方案,先找现成的开源工具和付费服务,最后再考虑自己编程,且编程时要以终为始,聚焦目标。 在 Trae 中,可以新建一个文件“AI Rules”,将相关规则代码复制进去并保存。在与 AI 沟通需求时引入该文件,AI 会按照规则进行开发。同时,AI 生成的代码可能存在随机性和错误,需要花费时间调试 Bug,可以通过终端、测试网页功能时的“F12”等方式查看报错信息并修复。
2025-03-08
AnimateDiff插件下载
AnimateDiff 插件的下载地址如下: 运动模块:https://huggingface.co/guoyww/animatediff/tree/cd71ae134a27ec6008b968d6419952b0c0494cf2 模型下载:https://huggingface.co/Kijai/MagicTimemergedfp16 安装地址:D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 模型位置:下载对应的模型并存放在指定位置并重命名,文件夹位置如果没有此文件需要新建并重命名,具体如下: D:\\ComfyUI\\custom_nodes\\ComfyUIAnimateDiffEvolved\\models D:\\ComfyUI\\custom_nodes\\ComfyUIAnimateDiffEvolved\\motion_lora 推荐工作流: file:h264mp4.json file:h265mp4.json file:webm.json file:av1webm.json file:1.5 文生视频工作流.json
2025-03-11
好用的office ai插件有哪些
以下是一些好用的 Office AI 插件: 1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 自动完成任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还有一些其他平台的插件,如 Coze 平台提供的丰富插件,涵盖搜索引擎、文本分析、图像识别等领域,包括必应搜索、LinkReader 等。同时,像“核心搭子小组:爸妈防骗助手”使用的工具及插件中,也有一些相关的,如 Moonshot、JinaWebReader 等。 内容由 AI 大模型生成,请仔细甄别。
2025-03-04
抓取视频文字的浏览器插件
以下是为您找到的与抓取视频文字的浏览器插件相关的信息: 视频内容分析模型,上传视频后可以生成视频内容的文本描述。来源: 一个浏览器插件,可以用 AI 读取您的邮件内容并帮您生成回复。来源: 此外,还有关于其他插件的相关内容: 适用于 Google 表格的无代码机器学习插件。来源: 对 Chat GPT 二次封装的产品,可以访问互联网数据以及支持直接生成图片。来源: Luma Imagine 3D 一种用文本创建 3D 的新方法。来源: RF Diffusion 模型,帮助设计蛋白质结构的扩散模型。来源: PubMed GPT:生物医学文本的特定领域大型语言模型。来源: 还有关于制作插件的一些信息: 如果报错、解析结果不对,可以点击 Raw Response,会看到报错或者返回值,再根据返回值调整配置输出参数。 复制对应的链接到浏览器地址栏,打开查看。 有些文字显示不出来,是因为字体包中没有这个字,所以就会导致显示不出来。这个暂时没什么办法。除非找到更加全面的字体包。 点击完成,就成功的创建了一个插件。 另外,有一款 AI 浏览器插件,目标是实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为了达到这一效果,大模型对话产品需要完成以下关键步骤: 1. 网页爬取:自行访问链接,解析网页内容。 2. 内容总结:根据提示词要求,提炼标题、摘要、要点等信息。 3. 二维码生成:利用 qrcode.js 库,将 URL 转换为二维码图片。 4. 卡片样式生成:基于特定模板设计要求(暂不考虑自适应样式主题),将卡片内容、二维码组合为精美的分享卡片。 值得一提的是,通过实践探索,发现了新的词生卡 Prompt 组织方法:把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”、“字体规范”、“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式有 3 个显著优势: 1. 模型通用性:采用纯 Markdown 格式编写,不依赖特定模型的特性,可以适配不同的大语言模型。 2. 提示简易性:提示词结构清晰易读,便于自然语言编写,降低使用门槛。 3. 生成稳定性:通过清晰的模块划分和自然语言描述,避免了指令间的相互干扰,提高了 AI 生成样式代码的准确性和一致性。
2025-02-24
能在局域内网,没有网络,离线的场景使用的AI编程工具,可以是单独运行的,也可以是JetBrains IDEs中作为插件使用的
以下是一些可以在局域内网、没有网络、离线场景使用的 AI 编程工具: 1. PyCharm:是 JetBrains 推出的智能代码补全工具,支持 Java、Python 和 JavaScript 等多种语言。因其高准确性著称,帮助开发人员节省编程时间。价格:起价每月 24.90 美元。 2. AIXcoder:AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言。它提供了自动任务处理、智能代码补全、实时代码分析以及输入时的错误检查功能。价格:暂无信息。 3. Ponicode:AI 驱动的代码工具,旨在帮助开发人员优化编码流程。利用自然语言处理和机器学习,根据用户的描述生成代码。由 CircleCI 维护。 4. Jedi:开源的代码补全工具,主要作为 Python 静态分析工具的插件运行,适用于各种编辑器和 IDE。价格:免费。 此外,还有以下相关工具: 1. Cursor:网址:https://www.cursor.com/ ,通过对话获得代码。 2. Deepseek:网址:https://www.deepseek.com/zh ,方便国内访问,网页登录方便,目前完全免费。 3. 通义灵码:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 4. JetBrains 自身的助手插件:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 5. AskCodi:一款 AI 代码助手,提供各种应用程序用于代码生成、单元测试创建、文档化、代码转换等。由 OpenAI GPT 提供支持,可以作为 Visual Studio Code、Sublime Text 和 JetBrains 的 IDE 的扩展/插件使用。 6. ODIN(Obsidian 驱动信息网络):是一个插件,可以在 Obsidian 中使用。它提供了一些功能,包括通过图形提示栏进行 LLM 查询、图形可视化、下拉菜单功能等。安装 ODIN 需要先安装 Obsidian 并按照指示进行插件的安装和启用。
2025-02-21
ComfyUI中的放大插件
ComfyUI 中的放大插件相关知识如下: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理)。UNet 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。 Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
2025-02-20
嵌入式WEB翻译插件
以下是关于嵌入式 WEB 翻译插件的相关信息: SD 提示词自动翻译插件 promptallinone: 作者:白马少年 发布时间:20230529 20:00 原文网址:https://mp.weixin.qq.com/s/qIshiSRZiTiKGqDFGjD0g 在 Stable Diffusion 中输入提示词只能识别英文,秋叶整合包包含提示词联想插件。 常用翻译软件如 DeepL(网址:https://www.deepl.com/translator,可下载客户端)、网易有道翻译(可 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换麻烦。 自动翻译插件 promptallinone 安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI。 插件特点: 一排小图标,第一个可设置插件语言为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单可选择翻译软件。 AIGC 落地应用 Open AI Translator(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 是接入了 GPT 能力的文本翻译、总结、分析类产品,翻译功能适合浏览网页时查询个别单词、句子。 最大优势是可在脱离只提供产品内 AI 能力的场景使用,如任何 web 场景,配合 Arc Browser 而非 Chrome 使用效果更佳。 调用方式:选中页面中的文本后会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 可用于文本分析、分析代码,搭配 Chat GPT 使用效果好。 开发者模式下也可辅助使用。 注:安装后需获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,找地方保存好 API Key 方便使用。 下载地址:
2025-02-15
Roo Code 的API Provider 参数哪里设置
要设置 Roo Code 的 API Provider 参数,您可以按照以下步骤进行操作: 1. 首先,进入 deepseek 的官网(https://www.deepseek.com/)。 2. 进入右上角的 API 开放平台。早期 deepseek 是有赠送额度,如果没有赠送的余额,可以选择去充值,支持美元和人民币两种结算方式,以及各种个性化的充值方式,并创建一个 API key。注意,API key 只会出现一次,请及时保存下来。 3. 接下来,以 cursor 作为代码编辑器为例,下载安装 cursor(https://www.cursor.com/),在插件页面搜索并安装 Roocline。安装完后,打开三角箭头,就可以看到 RooCline,选中 RooCline,并点击齿轮,进入设置。 4. 依次设置配置基本参数: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 5. 进行语言偏好设置。 6. 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。最后做完所有不要忘记点击 Done 保存修改。在聊天框输入产品需求,输入需求后点击这个 blingbling 的星星,优化提示词。最终,在 deepseekr1 的加持下基本上是一遍过,各种特效效果交互逻辑也都正确。画面也算优雅,交互效果也不错,是您想要的。
2025-01-26
1. laptop 2. artificial intelligence 3. generative 4. log in 5. AI-driven 6. bluetooth headset 7. video call 8. platform Write some interesting sentences with these words
以下是为您生成的包含这些关键词的有趣句子: 当我使用配备强大 GPU 的 AI 笔记本电脑,如戴尔 Precision 移动工作站,通过蓝牙耳机关闭了周围的噪音,登录到专门的 AI 驱动平台,与远方的朋友进行视频通话,探讨生成式人工智能的奇妙之处,感觉真是太棒了! 在微星 Creator/Workstation 系列的 AI 笔记本上,我利用预装的深度学习框架,如 NVIDIA CUDA 和 cuDNN,进行着生成式模型的训练,同时通过蓝牙连接着蓝牙耳机,享受着不受干扰的创作过程,然后登录到特定的平台分享我的成果,这一切都由 AI 驱动,借助高速的网络实现了如同面对面的视频通话交流。 联想 ThinkPad P 系列的 AI 笔记本,拥有出色的散热和续航,让我能长时间专注于生成式项目的开发。我戴上蓝牙耳机,登录 AI 平台,与团队进行视频通话,共同推动项目前进,这一切都离不开 AI 驱动的强大力量。
2025-01-20
Video-LLaVA与多模态图像视频识别
以下是对 26 个多模态大模型的全面比较总结: 1. Flamingo:是一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本作为输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到多模态(MM)领域,为解决数据稀缺问题,引入使用 ChatGPT/GPT4 创建的新型开源 MM 指令跟踪数据集及基准 LLaVABench。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,能复制 GPT4 展示的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含用于评估的 OwlEval 教学评估数据集。 6. XLLM:陈等人将其扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性成功应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域未来研究制定标准,并为学术界和工业界提供协议。
2025-01-07
what are the free video generation ai
以下是一些免费的视频生成 AI 工具: 1. Hidreamai(国内,有免费额度):支持文生视频、图生视频。提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。网址:https://hidreamai.com//AiVideo 2. ETNA(国内):由七火山科技开发的文生视频 AI 模型,可根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。网址:https://etna.7volcanoes.com/ 3. Pika Labs:被网友评价为目前全球最好用的文本生成视频 AI。功能包括直接发送指令或上传图片生成 3 秒动态视频,目前内测免费。生成服务托管在 discord 中,加入方式为在浏览器中打开链接 https://discord.gg/dmtmQVKEgt ,在“generate”子区输入指令或上传图片生成视频。 4. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 5. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
COW微信机器人、FastGpt微信机器人、COZE微信机器人的区别?
以下是 COW 微信机器人、FastGpt 微信机器人、COZE 微信机器人的区别: COW 微信机器人: 基于 Hook 机制,具有相对更高的稳定性和安全性,更简单易上手。 目前插件相对较少,仅支持 Windows 系统。 可以不用服务器,对小白更加友好。 能够结合 FastGPT 进行使用。 具备基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣的小功能。 FastGpt 微信机器人:可以与 COW 微信机器人结合使用。 COZE 微信机器人:在 6 月底的微信机器人共建中有所提及,有多种玩法,如对接 llm key 的玩法等。在百炼平台里的“应用”概念类似于 COZE 中的“bot”。
2025-03-11
trae与cursor有什么区别,用它开发微信小程序需要注意些什么?
Trae 与 Cursor 的区别主要体现在以下方面: 1. 在处理自然语言提出的非常具体的需求时,Trae 可能会在查找文件的步骤中出错,而 Cursor 在某些复杂任务中的表现可能更好。 2. Trae 中很多功能是免费的,而 Cursor 可能并非如此。 3. Trae 从底层架构开始就围绕着 AI 能力构建,比传统在 IDE 里集成 AI 的逻辑更具优势,使用起来更流畅、准确和优质。在插件式的使用方式下,用户使用 Cursor 仍需要具备一定的编程知识,而完全零编程知识也可以用 Trae 开发出应用,降低了编程门槛。 用 Trae 开发微信小程序需要注意以下几点: 1. 打开 Trae 并打开创建的文件夹,使用 Chat 模式明确需求,然后切换到 Builder 模式进行开发。 2. Trae 会在本地文件夹内生成代码,微信开发者工具从同一本地文件夹读取代码,且有实时预览功能。 3. 开发过程中若有报错需修改错误,直至在微信开发者工具内调试正常。 4. 上传时需在微信开发者工具右上角点击“上传”,在弹出的弹窗里选择“确定”,接着在弹出的选项里填写版本号和项目备注。 5. 上传完毕后,可在微信小程序后台的版本管理里查看开发版本的信息,可选择点击体验版进行线上体验或提交审核。
2025-03-10
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08