Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

视觉大模型的代表模型有哪些

Answer

以下是一些视觉大模型的代表模型:

  1. Flamingo:一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本输出。
  2. BLIP-2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 Q-Former,能利用冻结的 LLM 进行零样本图像到文本的生成。
  3. LLaVA:率先将 IT 技术应用到 MM 领域,引入新型开源 MM 指令跟踪数据集及基准 LLaVA-Bench 以解决数据稀缺问题。
  4. MiniGPT-4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,复制 GPT-4 的功能。
  5. mPLUG-Owl:提出新颖的 MM-LLMs 模块化训练框架,结合视觉上下文,包含 OwlEval 教学评估数据集。
  6. X-LLM:扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 Q-Former 的语言可迁移性应用于汉藏语境。
  7. VideoChat:开创高效的以聊天为中心的 MM-LLM 用于视频理解对话,为该领域的未来研究制定标准。
  8. Sora:符合视觉模型的规模化定律,是第一个展示确认新兴能力的视觉模型,包括遵循指令、视觉提示工程和视频理解等功能,能够根据人类指令生成长达一分钟的视频。
  9. CLIP:开创性的视觉-语言模型,将变压器架构与视觉元素结合,能在多模态生成框架中充当图像编码器。
  10. Stable Diffusion:多才多艺的文本到图像 AI 模型,采用变压器架构和潜在扩散技术生成各种风格的图像。
Content generated by AI large model, please carefully verify (powered by aily)

References

多模态大模型入门指南-长文慎入【持续更新】

如表1所示,对26 SOTA MM-LLMs的架构和训练数据集规模进行了全面比较。随后,简要介绍这些模型的核心贡献并总结了它们的发展趋势。(1)Flamingo。代表了一系列视觉语言(VL)模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。(2)BLIP-2引入了一个资源效率更高的框架,包括用于弥补模态差距的轻量级Q-Former,实现对冻结LLMs的充分利用。利用LLMs,BLIP-2可以使用自然语言提示进行零样本图像到文本的生成。(3)LLaVA率先将IT技术应用到MM领域。为了解决数据稀缺问题,LLaVA引入了使用ChatGPT/GPT-4创建的新型开源MM指令跟踪数据集以及MM指令跟踪基准LLaVA-Bench。(4)MiniGPT-4提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与LLM对齐。这种有效的方法能够复制GPT-4所展示的功能。(5)mPLUG-Owl提出了一种新颖的MM-LLMs模块化训练框架,结合了视觉上下文。为了评估不同模型在MM任务中的表现,该框架包含一个名为OwlEval的教学评估数据集。(6)X-LLM陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用Q-Former的语言可迁移性,X-LLM成功应用于汉藏语境。(7)VideoChat开创了一种高效的以聊天为中心的MM-LLM用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

视觉模型的规模化定律。有了LLMs的规模化定律,自然会问视觉模型的发展是否遵循类似的规模化定律。最近,Zhai等人[24]展示了,有足够训练数据的ViT模型的性能-计算前沿大致遵循(饱和)幂律。继他们之后,谷歌研究[25]提出了一种高效稳定训练22B参数ViT的方法。结果显示,使用冻结模型产生嵌入,然后在顶部训练薄层可以实现出色的性能。Sora作为一个大型视觉模型(LVM),符合这些规模化原则,揭示了文本到视频生成中的几种新兴能力。这一重大进展强调了LVMs实现类似LLMs所见进步的潜力。新兴能力。LLMs中的新兴能力是在某些规模上——通常与模型参数的大小有关——表现出的复杂行为或功能,这些行为或功能并未被开发者明确编程或预期。这些能力被称为“新兴”,因为它们源于模型在多样化数据集上的全面训练,以及其庞大的参数数量。这种组合使模型能够形成联系并做出超越简单模式识别或死记硬背的推断。通常,这些能力的出现不能通过从小规模模型的性能外推来直接预测。虽然许多LLMs,如ChatGPT和GPT-4,展示了新兴能力,但直到Sora的出现,展示类似能力的视觉模型还很少。根据Sora的技术报告,它是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。除了其新兴能力,Sora还展示了其他显著能力,包括遵循指令、视觉提示工程和视频理解。Sora的这些功能方面代表了视觉领域的重大进步,并将在后续部分进行探讨和讨论。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

自2021年以来,AI领域的一个重要焦点是能够解释人类指令的生成式语言和视觉模型,即多模态模型。例如,CLIP[18]是一种开创性的视觉-语言模型,它将变压器架构与视觉元素相结合,使其能够在大量的文本和图像数据集上进行训练。通过从一开始就整合视觉和语言知识,CLIP可以在多模态生成框架中充当图像编码器。另一个值得注意的例子是Stable Diffusion[19],这是一个多才多艺的文本到图像AI模型,以其适应性和易用性而受到赞誉。它采用变压器架构和潜在扩散技术来解码文本输入,并生成各种风格的图像,进一步展示了多模态AI的进步。随着2022年11月ChatGPT的发布,我们在2023年见证了商业文本到图像产品的出现,如Stable Diffusion[19]、Midjourney[20]、DALL-E 3[21]。这些工具使用户能够用简单的文本提示生成高分辨率和高质量的新图像,展示了AI在创意图像生成方面的潜力。然而,从文本到图像过渡到文本到视频由于视频的时间复杂性而具有挑战性。尽管工业界和学术界做出了许多努力,但大多数现有的视频生成工具,如Pika[22]和Gen-2[23],仅限于生成几秒钟的短视频片段。在这种背景下,Sora代表了一个重大突破,类似于ChatGPT在NLP领域的影响。Sora是第一个能够根据人类指令生成长达一分钟的视频的模型,标志着对生成式AI研究和开发产生深远影响的里程碑。为了便于轻松访问最新的视觉生成模型进展,最新的作品已被汇编并提供在附录和我们的GitHub中。

Others are asking
本地用Ollama部署模型,使用哪个ChatBox客户端好?
目前在本地使用 Ollama 部署模型时,没有特别突出或被广泛推荐的特定 ChatBox 客户端。不同的客户端可能在功能、界面和兼容性方面存在差异,您可以根据自己的需求和使用习惯进行选择和尝试。常见的一些客户端包括但不限于 Web 端的简单界面工具,或者一些具有特定功能扩展的桌面应用程序。但具体哪个最适合您,还需要您亲自测试和评估。
2025-03-27
大模型训练师
以下是关于大模型训练师的相关信息: 招聘信息: 中国移动设计院正在招聘大模型开发工程师,办公地点在北京海淀中关村。 数量:1 名 学历:本科及以上 资历:5 年及以上 岗位要求: 参与大模型技术研究、大模型微调、大模型智能体研发、基于大模型的应用研发等工作。 大模型相关的数据工程,包括预训练数据、微调数据、行业数据挖掘等。 大模型相关的落地实现:如推理优化、部署、AIAgent、工具学习、领域大模型等。 技能要求: 了解大模型基本原理,包括不限于模型架构、模型预训练及微调、模型部署及推理。 熟悉 LLM 相关技术,如 transformer,prompt tuning,RLHF,langchain,Agent,MOE,RAG 等。 熟悉算法和数据结构,熟悉常用的编程语言,有较好的 Python 开发经验,编程基础扎实。 了解或掌握机器学习、深度学习基本算法原理,熟悉 AI 建模流程,在 NLP 领域有开发经验优先。 了解熟悉大模型常用训练框架、推理架构;了解分布式计算、并行计算。 联络方式:飞书与@史鹏飞联系 大模型入门指南: 通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。可以用『上学参加工作』这件事来类比大模型的训练、使用过程: 1. 找学校:训练 LLM 需要大量的计算,因此 GPU 更合适,只有购买得起大量 GPU 的贵族学校才有资本训练自己的大模型。 2. 确定教材:大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 2024 年人工智能现状: More Money,More Problems: 预计明年会有团队花费超过 10 亿美元训练单个大规模模型。GenAI 的热潮不会消退,只是会变得更加昂贵。 Compute Squeeze: 政府和大型科技公司都将继续感受到计算需求的压力,其增长速度超过了电网的支持能力。这就像一个健美运动员增长得太快,健身房都快承受不住了——在某个时候,天花板可能会坍塌。 AI Enters Elections: 预期的 AI 对选举和就业的影响尚未显现,但这并不意味着我们可以放松警惕。记住,AI 的影响就像闪光粉:一旦出现,多年来你会在各处发现它。 人工智能仍然是令人兴奋的突破、未解决的伦理问题和无数万亿美元赌注的混合体。随着 OpenAI 在某些领域领先,Meta 在其他领域崛起,以及中国实验室不受制裁影响而上升,2024 年的 AI 舞台感觉更像是一个拥挤的拳击台,而不是一个和平的会议室。所以准备好爆米花,准备好 GPU——我们将迎来又一年的 AI 突破边界、测试极限,并可能改写一些定义。
2025-03-27
最近新出的大模型有哪些
最近新出的大模型有: 1. 通义千问推出的 Qwen2.5Max 大型专家模型,通过 SFT 和 RLHF 策略后训练,性能与顶尖模型竞争,在多个基准测试中超越了 DeepSeek V3,引发了 AI 社区对大规模专家模型的高度关注。相关链接: Blog: Qwen Chat: (选择 Qwen2.5Max 模型) API: HF Demo: 2. 阿里云发布的 Qwen2.5VL 新一代视觉语言模型。
2025-03-27
风格模型加载器
以下是关于风格模型加载器的详细步骤: 1. 下载工作流中的所需三张图片“SeasonYou_Reference、BG、MASK”,并上传自己所需的照片到 Input 部分。注意右上角放自己的人像图片(非人像会报错提示“no face detected”)。 2. 对于 vae 加载器部分,选择 xl 版本(因为大模型用的 xl)的 vae。 3. 对于 ipadater 部分,倘若加载器部分报错说 model 不存在,将文中画圈部分修改调整到不报错。 4. Pulid 部分: 下载好对应的节点以及参考官方网站最下面的安装对应要求。 注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错。 5. 官网下载两个文件,先点击如图中的左上角部分将加载器展开且选择官网下载好的两个模型,否则将会有问题。 6. GDino 加载器部分:在链接处下载相关文件,然后再次检查自己的文件有没有齐全:在 models 下创建 groundingdino 且配置以下文件命名齐全。同理,sams 也是。对于 groundingdino 和 sams 配置有没有齐全可以使用“抠头发.json”来检验。 7. 接下来很大概率在运行到此节点时会报科学上网的(httpsxxxxx)错误。倘若觉得在此工作流中排除 bug 很慢,不妨使用此网址的工作流(可以直接复制他的 json 内容自己创建一个 txt 文件后粘贴,再改后缀名为 json。)进行操作:,那么就要在尝试稳定的科学上网后重启 UI 跑工作流。 8. Ollama 大模型部分: 首先,下载 ollama,网站:。 其次,在网站中,复制代码如红框。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。 9. instanid 部分。
2025-03-27
我希望了解人工智能大模型公司的整体产业情况
以下是关于人工智能大模型公司的整体产业情况: 2024 年被称为国内大模型落地元年,经过一年时间的发展,呈现出以下特点: 1. 竞争格局:国内大模型行业基本形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争态势。 2. 落地增长:2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长。中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 3. 厂商表现:百度在中标数量和金额方面排名所有厂商之首,科大讯飞居第二。在金融行业,百度也排名第一。 4. 行业应用:在智能终端行业,超半数手机厂商使用文心大模型,多家车企已接入百度文心大模型。 5. 能力要求:大模型进入产业落地后,除模型本身能力外,落地应用所需的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业落地大模型需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正成为体系化之战。 此外,2023 年国内大模型发展情况包括:智谱推出了 4 代 GLM,MiniMax 推出新模型及“星野”APP,月之暗面在长 Token 能力上表现出色。但在 2C 端真正出圈的产品较少,在 2B 行业中,大模型对收入撬动有限。硬件层上,国内仍缺乏胜任大模型训练的芯片,华为昇腾在单卡指标上接近,但存在稳定性和生态问题。
2025-03-27
怎么本地部署ai模型,并进行微调
以下是本地部署 AI 模型并进行微调的主要步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,关于本地部署还有以下相关内容: 如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 PaaS 平台支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 总的来说,部署和训练自己的 AI 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-27
如何用AI 驱动的产品营销创新,从内容创作到视觉呈现的全方位变革?
以下是关于如何用 AI 驱动产品营销创新,从内容创作到视觉呈现的全方位变革的一些方法和案例: 一、内容创作方面 1. 利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,以获取关键信息,为营销内容创作提供方向。 2. 借助 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 二、视觉呈现方面 1. 通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,精准表达营销活动主题,如淘宝天猫大促视觉的案例。 2. 对于需要定制化真人模特实景素材的主题活动,利用 AI 将策划、搭建、拍摄、设计融为一个闭环流程,完成页面所有素材的生产和输出,例如七夕主题活动页面。 3. 在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如通过 SD 中 controlnet 的有效控制生成指定范围内的 ICON、界面皮肤等内容。 三、在阿里巴巴营销中的应用 1. 关键词优化:利用 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 2. 产品页面设计:借助 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 3. 图像识别和优化:使用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 4. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 5. 客户反馈分析:通过 AI 分析客户评价和反馈,优化产品和服务。 6. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 7. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 8. 营销活动分析:借助 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 9. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 10. 支付和交易优化:利用 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 11. 社交媒体营销:通过 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 12. 直播和视频营销:使用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 四、大型视觉模型 Sora 的机遇 1. 对于学术界,OpenAI 推出 Sora 标志着战略转变,鼓励更广泛的 AI 社区深入探索文本到视频模型,利用扩散和变换器技术。以原生大小训练 Sora 的创新方法为学术界提供了灵感,强调使用未修改数据集的好处,开辟了创建更高级生成模型的新路径。 2. 对于行业,Sora 目前的能力预示着视频模拟技术进步的道路,突出了在物理和数字领域内增强现实感的潜力。公司可以利用 Sora 生产适应市场变化的广告视频,并创建定制化的营销内容,降低成本,增强吸引力和效果,彻底改变品牌与受众互动的方式。
2025-03-24
计算机视觉
计算机视觉是机器认知世界的基础,人类获取的信息约 83%来自视觉,而计算机视觉旨在让计算机看懂图像或视频里的内容,像人一样通过视觉观察和理解世界。 其三大基础任务包括分类、检测和分割: 图像分类:根据图像中的语义信息对不同类别的图像进行区分。 目标检测:找出图像或视频中的目标物体,同时检测出物体的位置和大小。 图像分割:又可划分为语义分割和实例分割。语义分割不区分同类目标,实例分割则需要区分同类目标中的不同个体。 此外,计算机视觉还包括目标跟踪,对图像序列中的运动目标进行检测、提取、识别和跟踪,实现对运动目标的行为理解。 参考资料: 在企业应用中,计算机视觉的应用包括: 图像分类和物体识别,将图片作为输入,输出图像的内容分类,应用于面部识别。 物体识别,不仅分类或识别物体,还检测物体是否出现在图像里。 图像分割算法,识别物体位置并标记不同物体对应的像素点,如用于识别 X 光照射图片。 视觉追踪,检测视频中的奔跑者并追踪其轨迹和运动方向。
2025-03-19
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
人类接收外界信息的感官中,视觉占比高达83%,听觉占11%,其余触觉、嗅觉、味觉合计仅占6%。如何采用用AI画出图示呢
以下为您提供采用 AI 画出关于人类接收外界信息感官占比图示的相关指导: 首先,您可以选择合适的 AI 绘图工具,如 Creately、Whimsical 或 Miro 等。 Creately 是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,能自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作。官网:https://creately.com/ Whimsical 是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。其具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能。官网:https://whimsical.com/ Miro 是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/ 使用这些工具绘制图示的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-02-28
视觉理解技术最新动态和趋势
以下是视觉理解技术的最新动态和趋势: 一、视觉分析技术 1. Transformer 视觉模型优点 2. Transformer 视觉模型的局限 二、图像语言模型 三、视频语言模型 四、LLM 多模态 Agent 五、应用场景 1. 多模态内容理解与处理 2. 智能交互与自动化 3. 具身智能 4. 未来发展趋势(2024 ?) 5. 视频生成模型 mapping 六、未来发展方向 1. 技术路径而言:利用预训练 LLMs 进行指令调整 最初,多模态融合方法常采用预训练的目标检测器,如 ViLBERT、VisualBERT 和 UnicoderVL,通过提取图像特征和执行交叉模态预训练任务,为后续的图像 文本任务奠定基础。 随着 ViT 的出现和普及,更多方法开始利用 ViT 作为图像编码器,强调大规模预训练,以提高模型的性能和泛化能力,例如 Flamingo。 近期,向多模态 LLMs 发展,从进行预训练到向指令调整(instruction tuning)转变,如 LLaVA 和 MiniGPT4,融合视觉和语言信息,能更有效地完成视觉理解相关任务,提升模型对于指令的理解能力和零样本性能,更好地泛化到未见过的任务和领域。 2. 应用场景而言:赋予机器理解多模态的能力 此外,李飞飞在 2015 年的 TED 演讲《我们怎么教计算机理解图片?》中提到了计算机视觉方面的研究进展,指出虽然在科技上取得了很多进步,但在计算机视觉方面仍存在一些问题,如自动驾驶车辆的视觉敏锐度、向盲人传递画面、无人机的视觉技术等。
2025-01-10
有没有视觉识别的模型
以下是一些视觉识别的模型: 1. siglipso400mpatch14384:由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容(如物体、场景、颜色、纹理等)、将这些视觉信息编码成一组特征向量。可在 ComfyUI\models\clip 中下载,若因环境问题,也可在网盘中下载。下载好后,目录的文件包括 image_adapter.pt(适配器),其连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征使其适合语言模型处理、进行一些特定任务的优化或微调(如图片到文字)。可通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,若该文件夹不存在,新建一个。 2. Comfyui IPAdapter 中的图像模型: ,下载并重命名。 ,下载并重命名。下载后放入/ComfyUI/models/clip_vision。需要注意的是,clip vison 只能编码 224x224 大小的正方形图片,后续使用时若图片不是正方形,需进行裁剪。
2024-12-19
科学计算大模型的代表模型有哪些
科学计算大模型的代表模型主要有以下几种: 1. Encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,最知名的代表是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表模型如谷歌的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此结构,包括 ChatGPT。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在数字化处理中,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。当神经元数量达到百亿、千亿级别时,会出现群体智能,即智能涌现,这在自然界如蚂蚁群体中有典型体现,人脑也由约 1000 亿个神经元构成复杂神经网络。
2025-03-20
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
现在AI应用都有哪些代表性的工具,请用表格展示出来
|序号|已有产品|主题|使用技术|市场规模|一句话介绍|项目功能| |||||||| |81|下厨房口味调整功能|AI 菜谱口味调整工具|自然语言处理、数据分析|数亿美元|根据用户反馈调整菜谱口味|下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等| |82|英语流利说纠错功能|AI 语言学习纠错平台|自然语言处理、机器学习|数十亿美元|帮助语言学习者纠正错误|英语流利说通过 AI 技术识别用户在语言学习中的发音、语法等错误,并提供纠正建议和练习| |83|豆瓣电影剧情分析工具|AI 电影剧情分析系统|数据分析、自然语言处理|数亿美元|分析电影剧情,提供深度解读|豆瓣电影的剧情分析工具利用 AI 对电影剧情进行分析,为用户提供剧情解析、主题探讨等内容| |84|腾讯文档分类功能|AI 办公文件分类系统|数据分析、机器学习|数亿美元|自动分类办公文件,方便管理|腾讯文档利用 AI 对用户上传的文件进行分类,如合同、报告、方案等,提高文件管理效率| |85|美丽修行定制方案功能|AI 美容护肤方案定制平台|图像识别、数据分析|数亿美元|根据用户肤质定制护肤方案|美丽修行根据用户上传的照片和肤质信息,利用 AI 定制个性化的护肤方案,包括产品推荐和使用顺序| |91|游戏内商城推荐功能|AI 游戏道具推荐系统|数据分析、机器学习|数亿美元|根据玩家需求推荐游戏道具|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等| |92|彩云天气分时预报|AI 天气预报分时服务|数据分析、机器学习|数亿美元|提供精准的分时天气预报|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动| |93|医渡云病历分析系统|AI 医疗病历分析平台|数据分析、自然语言处理|数十亿美元|分析医疗病历,辅助诊断|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议| |94|讯飞听见会议总结功能|AI 会议发言总结工具|自然语言处理、机器学习|数亿美元|自动总结会议发言内容|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理| |95|书法临摹软件|AI 书法作品临摹辅助工具|图像识别、数据分析|数亿美元|帮助书法爱好者进行临摹|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价| |7|AI 简历优化工具|超级简历优化助手|自然语言处理|数亿美元|帮助用户优化简历提高求职成功率|超级简历优化助手分析简历内容并提供优化建议| |8|酷家乐|AI 室内设计方案生成|图像生成、机器学习|数十亿美元|快速生成个性化室内设计方案|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案| |9|Amper Music|AI 音乐创作辅助工具|机器学习、音频处理|数亿美元|协助音乐创作者进行创作|Amper Music 根据用户需求生成旋律和编曲| |10|松果倾诉智能助手|AI 情感咨询助手|自然语言处理、情感分析|数亿美元|提供情感支持和建议|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询| |11|小佩宠物智能设备|AI 宠物健康监测设备|传感器数据处理、机器学习|数十亿美元|实时监测宠物健康状况|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警| |12|马蜂窝智能行程规划|AI 旅游行程规划器|数据分析、自然语言处理|数十亿美元|根据用户需求生成个性化旅游行程|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线|
2025-03-02
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
AI 提示词对是做什么的,user 和 assistant 代表什么?
AI 提示词是用于向语言模型传递指令、问题或其他详细信息,以指导模型生成更好的结果。其质量与提供的信息数量和完善度有关。 在使用 OpenAI 的 gpt4 或者 gpt3.5turbo 等聊天模型时,可以使用三个不同的角色来构建 prompt:system、user 和 assistant。其中,system 不是必需的,但有助于设定 assistant 的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。user 代表用户传递给模型的消息,而 assistant 的消息则是模型给出的响应。 提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。例如,可以通过改进提示词来获得更符合需求的输出结果。语言模型能够基于给出的上下文内容进行续写,但输出结果可能出人意料,通过优化提示词可改善。 此外,从提示词的视角看大模型的输出,可分为系统提示词、用户提示和助手提示词三段,这三段内容是连续的。攻击者可能通过操纵模型输出获取系统提示词,而系统提示词包含应用的原信息、功能设定、产品设定以及 AI 应用的逻辑等。
2024-12-11