Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想知道和manus类似的AI智能体有哪些

Answer

以下是一些与 Manus 类似的 AI 智能体:

  1. Claude:传统 AI 助手,仅提供建议。
  2. 专用 Agent:覆盖领域相对较窄,处理跨领域复合任务的能力可能不如 Manus。

Manus 作为一款由中国团队研发的全球首款通用型 AI 代理工具,具有以下特点:

  1. 具备自主规划、执行复杂任务并直接交付完整成果的能力。
  2. 技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成。
  3. 包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件。
  4. 采用“少结构,多智能体”的设计哲学,在处理复杂任务时更加高效和准确。
  5. 能够通过记忆功能优化用户偏好,具备持续学习与优化、多模态问题拆解能力、自主执行能力和多智能体架构等优势。

其运作逻辑是将人类指令按思路生成 todolist 文档,拆解任务,按需调用相关工具,评估完成质量,多个子步骤的结果嵌套利用以完成原始指令的产出。

Content generated by AI large model, please carefully verify (powered by aily)

References

详解:Manus

Manus是一款由中国团队研发的全球首款通用型AI代理工具,于2025年3月5正式发布。它区别于传统聊天机器人(如ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的AI”。[heading1]Manus AI代理工具的具体技术架构是什么?[content]Manus AI代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。[heading2]Manus AI的技术架构还包括以下几个关键组件:[content]1.虚拟机:Manus AI运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。2.计算资源:Manus AI利用计算资源生成算法,用于筛选简历等具体任务。3.生成物:Manus AI能够生成各种类型的输出,如文本、表格、报告等。4.内置多个agents:Manus AI通过内置多个智能体,实现了任务的分解和协同工作。此外,Manus AI还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现AI的能力。这种设计使得Manus AI在处理复杂任务时更加高效和准确。Manus AI的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。

详解:Manus

对比传统AI助手:Claude等工具仅提供建议,而Manus直接交付成果(如完整PPT、可视化报告)对比专用Agent:覆盖领域更广,且能处理跨领域复合任务(如同时涉及数据分析和法律审查)[heading1]Manus如何处理和优化用户偏好记忆?[content]Manus通过其记忆功能优化用户偏好,具体处理和优化方式1.记录用户偏好:Manus具备记忆功能,能够根据历史数据和经验优化任务执行策略。例如,如果用户之前要求以表格形式呈现结果,Manus会记住这个偏好,并在后续类似任务中直接以表格形式交付。2.持续学习与优化:Manus能够持续学习用户的偏好和需求,并在后续任务中即时应用优化方案。例如,当用户临时追加5份简历并提出偏好调整(如倾向特定技能)时,Manus能通过记忆模块学习新规则,并在后续任务中优先应用这些优化方案。3.多模态问题拆解能力:Manus不仅能够处理单一任务,还能解决复杂的多模态问题。例如,在纽约房地产研究的复合型需求中,Manus通过文献调研建立区域安全评估体系,交叉验证学区教育资源数据,编写Python脚本计算房价,最终在房产平台实施精准筛选并生成图文报告。4.自主执行能力:Manus能够在云端独立完成任务,无需人工干预,直接交付完整的任务成果。这种自主执行能力使得Manus能够更好地理解和适应用户的偏好。5.多智能体架构:Manus采用Multiple Agent架构,将任务拆解为规划、执行、验证等子模块,由多个独立代理协同完成。这种架构不仅提高了任务处理的效率,还使得Manus能够更好地根据用户的具体需求进行优化。[heading1]Manus与其他AI助手(如Claude)在功能和性能上的具体比较结果如下:

Manus 吹散了人与 Agent 之间的迷雾|直播测试 8 小时,我对 Manus 真实实测感想

Manus的主要智力担当是Claude AI和某个特训过的推理模型。它面临一个人类指令时,会对指令按“根据人类指令,拆分完成任务所需的子步骤”的思路,生成todolist文档,拆解任务,降低实现难度基于这个todolist,每完成一个子任务就打个✅,为AI指明多步骤任务中每一步的执行要求(因为当前AI的上下文记忆长度有限,也需要做备忘录)再针对list中的每个todo,按需调用相关工具(linux命令、python、浏览器等),一一推进子步骤进行,评估完成质量。这些步骤可以是安装软件环境、创建文档、浏览网页、编写程序&网页等多个子步骤的生成结果,嵌套利用起来,它就可以做出原始指令的产出物。比如:网页搜索、网页阅读总结而成的调研数据文档+网页样式+……=生成了xx市场调研分析报告网页当然,Manus不局限于做网页,做报告;还能玩html的2048游戏、写游戏攻略心得、帮我安装宝可梦游戏、安装NDS模拟器、代替我登录可灵AI输入prompt做AIGC视频。>>>此处需要发挥想象力所以它确实是个通用Agent

Others are asking
AIGC是什么意思
AIGC 是 AI generated content 的缩写,又称为生成式 AI,指利用人工智能技术生成的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 AIGC 工具通常使用机器学习算法,以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式。AIGC 由人工智能生成内容,可快速大规模生成,适用于自动化新闻、广告创作等;UGC 由用户生成,内容丰富多样,适用于社交媒体、社区论坛等;PGC 由专业人士或机构生成,内容质量高、专业性强,适用于新闻媒体、专业网站等。 在国内,AIGC 主要在《网络安全法》《数据安全法》《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》共同监管。
2025-03-13
有没有使用AI炒股的相关内容
以下是关于使用 AI 炒股的相关内容: 1. Stocked AI 是一个投资服务,提供每日股票推荐。其推荐由机器学习模型生成,使用人工智能预测下一天的股票收盘价。 2. 博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》在某种程度上实现了多 Agent 协作的能力。 3. 有摊位提出“AI+交易:来定制专属于你的私人高级交易顾问吧!”的思路,期望借助 AI 分析行情,提高资金使用效率。 目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少。一方面高度智能化的 Agent 能力需要打磨,概念落地还有距离;另一方面 AI 和娱乐消费诉求的结合几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2025-03-13
写论文的AI有吗?
在论文写作领域,AI 技术的应用发展迅速,提供了多方面的辅助,以下是一些相关的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些常用的 AIGC 论文检测网站和工具: 1. Turnitin:增加了检测 AI 生成内容的功能,用户上传论文后会提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要检测网络剽窃行为,虽非专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可识别可能由 AI 生成的非原创内容。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成,并提供详细报告。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。内容由 AI 大模型生成,请仔细甄别。
2025-03-13
什么是 AI智能体
AI 智能体是指拥有各项能力的类似机器人小助手的存在,可以为用户做特定的事情。简单理解,它就像是 AI 机器人,参照移动互联网,类似于 APP 应用的概念。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。体验过 GPT 或者文心一言大模型的小伙伴应该都知道,现在基本可以用自然语言来编程,降低了编程的门槛。 AI 智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。其出现是为了解决如 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,捏出专属的 AI 智能体来解决问题。 例如,在社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入。在 B 端,帮助 B 端商家搭建 Agent 也是一种应用场景。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2025-03-13
有什么ai助手可以学习文档,然后根据文档内容生成完整的python代码程序的吗?
以下是一些可以学习文档并生成完整 Python 代码程序的 AI 助手: 1. Wing Python IDE Pro:由 Wingware 开发的专为 Python 编程设计的开发环境,集成了代码编辑、导航和调试功能,具备智能自动补全、代码重构、多选功能和代码片段工具。价格:年度许可证起价 179 美元/月。 2. Smol Developer:开源的 AI 开发助手,可以根据产品需求生成完整的代码库,具备简单、安全、易于理解的代码结构,同时高度灵活和定制。价格:开源项目,遵循 MIT 许可证。 3. Cody:Sourcegraph 的 AI 工具,能理解整个代码库,解答问题并编写代码,还能详细解释代码,定位特定组件,并提出修复建议。可通过 VS Code 扩展直接使用,个人使用免费。 4. FittenAI 编程助手:安装前需先安装 Python 的运行环境,安装步骤为点击左上角的 FileSettingsPluginsMarketplace。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。其功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可生成代码)、代码转换(选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成转换)。
2025-03-13
目前最强的AI是哪家?
目前在 AI 领域,很难简单地确定哪家是最强的。Llama 3.1 是迄今为止最大版本,在推理、数学、多语言和长上下文任务中能与 GPT4 相抗衡,标志着开放模型缩小了与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现出色,解决了 30 题中的 25 题,接近人类国际数学奥林匹克金牌得主的表现。 在国内,由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得了优异成绩,尤其在数学和编程方面表现突出。智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型,还有“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。 需要注意的是,AI 领域发展迅速,各模型的优势和表现也会随时间变化。
2025-03-13
你如何评价manus和deepseek的事件性?从里程碑的角度来思考!
从里程碑的角度来看,DeepSeek 在处理这个事件时展现出了强大的语言生成和情境构建能力。它能够根据复杂且细致的需求,在思考 8 秒后生成一段富有历史感、情感深度和符合人物性格处境的独白。这段独白不仅考虑到了时间设定、文学修辞的运用,还兼顾了历史事实和人物的心理活动,展现出了较高的智能水平和创作能力。然而,对于 Manus 在这一事件中的作用或表现,由于提供的内容中未提及,无法进行评价。
2025-03-10
how do I get an invite code for manus AI
Manus 的内测资格申请流程和条件如下: 1. 申请渠道:Manus 官网是唯一官方的申请渠道,要注意别被骗。团队表示会优化内测流程,保障公平性和用户体验。 2. 邀请码获取:Manus 团队从未开设付费获取邀请码的渠道,所有内测资格均免费发放。目前二手交易平台上的邀请码价格飙升,从 999 元炒至 5 万元,但这些都不是官方渠道获取的邀请码。 3. 内测名额:由于系统容量有限,团队将优先保障现有用户的核心体验,并逐步有序地释放新的邀请名额。 此外,有人对 Manus 进行了直播测试 8 小时,设计了 6 个最想测的任务,按照顺序分别是: 1. 创作世界首支 AI 自主创作的自我介绍的视频:https://manus.im/share/EWwJDzTWrW8MjqThadvTT9?replay=1 2. 帮草拟邮件,找到 Manus 官方邮箱,完成 Manus 邀请码的申请:https://manus.im/share/Fk6f4LCKvuM0lQ62EJf6SZ?replay=1 3. 自主玩 2048 网页游戏,并给自己解说,写游戏心得:https://manus.im/share/5XJGL0FQP1nuWchxtqsV8R?replay=1 4. 安装《宝可梦:黑》,并尝试捕获第一只宝可梦:https://manus.im/share/pCPVNmrejPknbTy5GBuzAy?replay=1 5. 自行进入可灵 AI,创作一条由 AI 操作生成的 AI 视频:https://manus.im/share/Q08zzgKnAPIog5QxqMqHoA?replay=1 6. 让 Manus 自行调查自己所处的环境,输出 Manus 自己的技术架构:https://manus.im/share/Gez1G14tfRexf50GMZyckD?replay=1
2025-03-10
Manus帮我介绍一下
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。其核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。 当前的 Manus 约等于 AI 操纵着一个没有图形界面的 Linux 虚拟机和浏览器,能感知电脑环境,执行各类操作。它能跑各种 linux 下的指令、库、程序(如 cd、ls 指令、python 等),也能访问各种网页、获取一些 API 接口的数据。但因为没有图形界面,所以没法运行图形程序。访问网页时,阻挠人类使用的各种要素,一样会打扰到 Manus。Manus 提供了用户可视的命令行视窗、浏览器、vscode 两种选项,方便查看运行指令、接管网页和修改文件。您还可以给 Manus 上传文件,想必未来也能对接私有 API,有想象空间。
2025-03-09
manus算是AGI级别的产品吗?
Manus 是一款在 AI 领域引起关注的产品。以下是关于 Manus 的一些信息: 有众多关于 Manus 的体验文章,如《》等,展示了其强大的能力,如能完成复杂任务、自动拆解需求并实时运行,在某些方面超越了 OpenAI 的 DeepResearch,在 GAIA 评分中获得第一。 《》指出 Manus 让 AI 操控电脑迈出关键一步,它本质上是 AI 驱动的无图形界面 Linux 虚拟机和浏览器,能够运行终端命令、访问网页、调用 API,适用于自动化办公、数据分析等任务,但目前仍有一些限制,如无法运行 GUI 程序、自动登录网页账号或绕过验证码。 然而,仅根据这些信息,不能直接确定 Manus 是否属于 AGI 级别的产品。需要更多综合和深入的评估来做出准确判断。
2025-03-08
manus是否很强大
Manus 是一款非常强大的 AI 代理工具。它由中国团队研发,于 2025 年 3 月 5 日正式发布,是全球首款通用型 AI 代理工具。 Manus 区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。其强大能力体现在以下方面: 1. 技术架构:主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。通过规划、执行和验证三个子模块的分工协作,实现对复杂任务的高效处理。核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。 2. 关键组件: 虚拟机:运行在云端虚拟机中,用户可随时查看任务进度,适合处理耗时任务。 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。 生成物:能够生成各种类型的输出,如文本、表格、报告等。 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。 3. 设计哲学:采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力,使其在处理复杂任务时更加高效和准确。 众多体验者对 Manus 的评价颇高,认为其在完成复杂任务、自动拆解需求并实时运行等方面表现出色,超越了 OpenAI 的 DeepResearch,在 GAIA 评分中位列第一。
2025-03-07
AI Agent MANUS个人助手是否可以本地私有化部署
目前没有明确的信息表明 AI Agent MANUS 个人助手可以本地私有化部署。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力。其技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成,包括规划、执行和验证三个子模块,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,并采用了“少结构,多智能体”的设计哲学。 但对于其是否能本地私有化部署,现有资料未给出确切说明。在构建高质量的 AI 数字人方面,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API。而在本地部署资讯问答机器人方面,有相关案例,但未提及与 AI Agent MANUS 个人助手的直接关联。
2025-03-07
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
通过通用语言大模型能直接输出思维导图的AI智能体有那些推荐
以下是为您推荐的一些通过通用语言大模型能直接输出思维导图的 AI 智能体: 1. 豆包:输入简单提示词就能创建个人 AI 智能体。 2. GLM4flash:在处理纯文本总结任务时,仅需 13B 或更小参数的模型,加上精调的提示词,就能产生很好的结果。具有较长的上下文窗口、响应速度快、并发支持高、免费或价格低等优点。 需要注意的是,AI 领域发展迅速,新的产品和服务不断涌现,您可以持续关注相关领域的最新动态以获取更多更好的选择。
2025-01-20
AI智能体是什么?AI超级个体是什么?AI智能体和超级个体有什么区别和关联?
AI 智能体是不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 AI 超级个体可以理解为一种能够帮助我们充分发挥作为人类潜力的伙伴。它是我们的外脑,我们每个人独特的个性、经验和思考风格,将会与这些智能个体融合,成为我们的化身。超级智能将强化我们自身,与人类共生,共同汇聚成智能时代的新知识网络。 AI 智能体和超级个体的区别在于:AI 智能体更侧重于执行全自动化业务的能力,而超级个体更强调对人类潜力的辅助和强化,以及与人类的融合共生。它们的关联在于都是人工智能在不同应用和概念层面的体现,都旨在为人类提供帮助和服务,推动人类与人工智能的协同发展。
2025-01-16
AI对于自媒体有什么帮助的网站
以下是一些 AI 对于自媒体有帮助的网站和相关信息: 10 分钟在网站上增加一个 AI 助手: 方案概览:在网站中引入一个 AI 助手,只需 4 步。 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 搭建示例网站:通过函数计算,快速搭建一个网站,模拟企业官网或者其他站点。 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 AI 绘画在自媒体中的应用: 个体方面:成为自媒体博主、个体商户应用、实体印刷(T恤,杯子实物等)、AI 摄影、设计接单、AI 定制萌娃头像、电商商品、自媒体素材、AI 服装预售、AI 视频接单、培训老师。 公司方面:设计质量和效率提升、AI 绘画相关应用开发、CV 方面算法应用。 2024 年 10 月 8 日的相关信息: 《》鼓励每个人建立自媒体。AI 播客方面,推出中文版 Demo 并吸引大量参与者。同时,开设了 AI 酒吧 Bar2AGI,成为行业交流的新场所。参与了活动,包括 Demo Inn 和云栖大会,感受到行业的快速发展和乐观氛围。 《》国庆节期间的重要 AI 新闻,如 OpenAI 推出 Canvas 功能和实时 API,微软发布新版 Copilot,具备深度系统集成和实时语音功能;Meta 发布 Meta Movie Gen 视频生成模型,自动配音质量高;LiquidAI 发布非 Transformer 模型 LFMs,推理效率显著提高。此外,Sora 项目负责人离职、多个新模型和工具发布,以及 OpenAI 完成新一轮融资,估值达到 1570 亿美元。
2025-01-14
工作流对于智能体有什么作用
工作流对于智能体具有以下重要作用: 1. 可视化组合功能:工作流就像可视化的拼图游戏,能将插件、大语言模型、代码块等功能组合在一起,创建出复杂且稳定的业务流程。 2. 应对复杂任务:当面对多步骤且对结果要求严格的任务时,如结果需准确无误、格式正确,工作流能发挥重要作用。 3. 构成基本单元:工作流由多个小块块(节点)组成,这些小块块包括大语言模型、自定义代码、判断逻辑等,是工作流的基本单元。 4. 明确起点和终点:工作流有开始和结束的特定小块块,开始的小块块包含输入信息,结束的小块块展示运行结果。 5. 信息传递与自定义:不同小块块工作所需的信息有引用前面小块块给出的信息和自行设定的信息两种。 在具体应用中,如在品牌卖点提炼中,工作流确定了以品牌卖点提炼六步法为核心的流程,并将其他分析助手加入其中,包括品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,还包括一些未在结构中体现但有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 在 Bot 智能体中,Bot 由 4 个不同的工作流组成,会根据用户的不同输入调用不同工作流完成自动化任务,如在不同的查询和发送需求场景下,分别采用相应的工具。同时,还通过变量设置、开场白设置等与工作流中的信息交互联动,提升用户交互体验。
2024-11-23
AI agent和智能体有什么区别
AI agent 和智能体在以下方面存在区别: 1. 概念侧重点:AI agent 更强调作为数字人的大脑,拥有记忆模块等,以实现更真实的交互;智能体则被视为智能的最小单元,是可以设定目标后主动完成任务的。 2. 能力构成:AI agent 主要通过接入大语言模型,并结合工具、记忆、行动、规划等能力来发挥作用;智能体不仅具备推理能力,还能执行全自动化业务,但目前许多相关产品仍需人类参与。 3. 实现方式:AI agent 目前行业里主要通过如 langchain 框架,在 prompt 层和工具层完成设计,将大模型与工具进行串接;智能体在实现上可能涉及更多复杂的技术和逻辑。
2024-11-12
什么是智能体
智能体(Agent)在人工智能和计算机科学领域是一个非常重要的概念,指的是一种能够感知环境并采取行动以实现特定目标的实体,可以是软件程序,也可以是硬件设备。 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 智能体可以根据其复杂性和功能分为几种类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 随着 ChatGPT 与 AI 概念的爆火,出现了很多新名词,“智能体 Agent”还有 bot 和 GPTs 等。简单理解就是 AI 机器人小助手,参照移动互联网的话,类似 APP 应用的概念。在做 Agent 创业的公司有很多,包括 C 端和 B 端的案例。同时也有很多智能体开发平台。
2025-03-13
什么是人工智能
人工智能(Artificial Intelligence,简称 AI)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机执行。 然而,有些任务无法明确编程,如根据照片判断人的年龄。我们能做是因为见过很多不同年龄的人,但无法明确大脑完成此任务的具体步骤,所以这类任务是 AI 感兴趣的。 对于三年级的孩子,可以用能理解的语言解释:AI 就是让计算机或机器能像人类一样思考和学习的技术。 AI 分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 得到巨大发展,只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 则能做任何人类可以做的事。
2025-03-13
如何利用人工智能破解无人机通信协议
目前没有关于如何利用人工智能破解无人机通信协议的相关内容。破解无人机通信协议是不合法且不符合道德规范的行为,可能会导致严重的法律后果。在合法和合规的前提下,人工智能可以用于优化无人机的通信效率、增强通信安全性等方面。
2025-03-13
如何训练自己的智能体
训练自己的智能体可以参考以下步骤: 1. 创建智能体 知识库 手动清洗数据:上节课程是自动清洗数据,自动清洗数据可能出现数据不准的情况,本节尝试手动清洗数据以提高准确性。参考。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入,可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度,例如对于画小二的 80 节课程,分为 11 个章节,不能一股脑全部放进去训练,要先将大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能够搜到,没有通过发布无法获取 API。 2. 参考谷歌发布的世界模型 Genie:或许有一天,Genie 可以被用作训练多任务智能体的基础世界模型。在图 14 中,作者展示了该模型已经可以用于在给定起始帧的全新 RL 环境中生成不同的轨迹。 3. 了解基础通识课中的相关内容: 流式训练方式提升训练速度和质量。 多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。 端侧大模型的特点。 AI 工程平台,如 define,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。 AI 工程平台 coach 的应用,包括新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 模型社区介绍,如魔搭社区等。 AI 建站预告。
2025-03-13
LVMH智能导购等你来:购是讲什么
LVMH 智能导购相关内容如下: 这是 LVMH 与阿里云联合举办的智能导购创意开发赛,是国内首次与全球精品时尚行业领军者联合举办的 AI 应用开发创意活动。不限主题、不限形式,参赛者可在阿里云百炼大模型服务平台定义 LVMH 集团智能导购。 赛事目标:在阿里云百炼平台,利用 AI 技术打造智能导购解决方案,引领零售新潮流。 投稿时间:2025 年 01 月 23 日至 02 月 28 日。 合作方:阿里云×LVMH 。 参赛要求及交付物: 应用开发数据:可下载作为基础数据源,若有干扰数据需自行分析解决,对于商品描述不全等信息可参照官方网站决定使用方式,使用其他非官方网站数据需谨慎并与主办方沟通。 技术文档提交要求:技术方案提交截止时间为 2025 年 2 月 28 日,通过邮箱提交,邮件标题为【LVMH&百炼杯】选手/队伍名称作品主题,内容包含概述、问题定义及解决方案、技术方案详情、附录、账号 UID 等方面。 智能导购的 100 个创意方向,例如客户体验优化方面,包括 AI 虚拟试穿助手、奢侈品养护知识问答、多语言导购机器人等 40 个方向。
2025-03-13