Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数据分析产品的智能体有哪些

Answer

以下是一些常见的数据分析产品的智能体类型:

  1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。
  2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。
  3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。
  4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。
  5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。

此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。

在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。2.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。3.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。4.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。5.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

【市场分析报告】-超级宣发-作品说明

颖子团队的智能体搭建思路分享[heading2]作品信息[content]|智能体名称|市场分析报告||-|-||智能体简介|品牌营销公司在用的【市场分析报告】生成智能体,输入行业/类目关键词智能体自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断!||应用场景<br>目标人群、当前痛点、解决什么问题、应用价值|目标人群:<br>企业管理层-做发展策略评估<br>投资者-评估投资机会<br>创业者-评估项目可行性<br>营销人员-做营销计划依据<br>当前痛点:<br>Q:信息收集需要长时间?<br>A:智能体自动检索并生成报告,减少90%信息收集整理时间!<br>Q:报告的真实性是否可验证?<br>A:数据化呈现更具真实性,且附带信息来源网址便于源信息校正!<br>Q:现有大模型做的市场报告太过概念化,不能做有效参考!<br>A:报告格式涵盖:市场规模与趋势分析、竞争格局、消费者行为分析、产品特点与技术分析、区域市场分析、挑战与机遇分析、营销策略建议7大板块18个子目录,更加符合实用需求!<br>应用价值:减少信息收集时间!真实可验证!聚焦决策判断!||智能体主要功能|根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。|

【共学营特别场第二场】智谱BigModel开放平台工作流搭建

R9xAlttc8iVBnCb</qa>|模块|截图|说明||-|-|-||节点类型||1.开始节点:每个工作流都必须有一个开始节点,它标志着工作流的起点。<br>2.LLM节点:大模型用于调用AI模型,实现智能化的任务处理。<br>3.Agent节点:具有自主规划任务、使用工具、记忆的智能体<br>4.问答节点:支持在workflow执行过程中与用户交互获取信息,可以选择卡片选项点选或对话回复,用于在工作流处理过程中,发送一些过程中指定步骤的消息出来。<br>5.文本处理节点:用于处理文本数据,如数据提取、数据合并<br>6.分支判断节点:用于根据条件判断执行不同的分支。<br>7.工具节点:用于调用其他外部服务的节点,如发送邮件、调用API等。<br>8.代码节点:用于执行自定义的代码逻辑。<br>9.图表节点:根据输入的数据、所选择的样式、生成对应的图表。支持配置文本,文本可选择输出固定话术或引用前序节点的输出。<br>10.其中数据、样式配置、图表文本均支持"固定值"或"引用"前序节点的输出|

Others are asking
国内最好的ToB智能体有哪些?分别是什么公司提供的。
目前国内在 ToB 智能体领域,没有明确公认的“最好”的定义,不同的智能体在不同的业务场景和行业中各有优势。一些在该领域较为知名的公司包括阿里巴巴、腾讯、百度等,但具体的优秀 ToB 智能体产品会因行业需求和应用场景的差异而有所不同。
2025-03-25
我想知道和manus类似的AI智能体有哪些
以下是一些与 Manus 类似的 AI 智能体: 1. Claude:传统 AI 助手,仅提供建议。 2. 专用 Agent:覆盖领域相对较窄,处理跨领域复合任务的能力可能不如 Manus。 Manus 作为一款由中国团队研发的全球首款通用型 AI 代理工具,具有以下特点: 1. 具备自主规划、执行复杂任务并直接交付完整成果的能力。 2. 技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成。 3. 包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件。 4. 采用“少结构,多智能体”的设计哲学,在处理复杂任务时更加高效和准确。 5. 能够通过记忆功能优化用户偏好,具备持续学习与优化、多模态问题拆解能力、自主执行能力和多智能体架构等优势。 其运作逻辑是将人类指令按思路生成 todolist 文档,拆解任务,按需调用相关工具,评估完成质量,多个子步骤的结果嵌套利用以完成原始指令的产出。
2025-03-13
通过通用语言大模型能直接输出思维导图的AI智能体有那些推荐
以下是为您推荐的一些通过通用语言大模型能直接输出思维导图的 AI 智能体: 1. 豆包:输入简单提示词就能创建个人 AI 智能体。 2. GLM4flash:在处理纯文本总结任务时,仅需 13B 或更小参数的模型,加上精调的提示词,就能产生很好的结果。具有较长的上下文窗口、响应速度快、并发支持高、免费或价格低等优点。 需要注意的是,AI 领域发展迅速,新的产品和服务不断涌现,您可以持续关注相关领域的最新动态以获取更多更好的选择。
2025-01-20
AI智能体是什么?AI超级个体是什么?AI智能体和超级个体有什么区别和关联?
AI 智能体是不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 AI 超级个体可以理解为一种能够帮助我们充分发挥作为人类潜力的伙伴。它是我们的外脑,我们每个人独特的个性、经验和思考风格,将会与这些智能个体融合,成为我们的化身。超级智能将强化我们自身,与人类共生,共同汇聚成智能时代的新知识网络。 AI 智能体和超级个体的区别在于:AI 智能体更侧重于执行全自动化业务的能力,而超级个体更强调对人类潜力的辅助和强化,以及与人类的融合共生。它们的关联在于都是人工智能在不同应用和概念层面的体现,都旨在为人类提供帮助和服务,推动人类与人工智能的协同发展。
2025-01-16
AI对于自媒体有什么帮助的网站
以下是一些 AI 对于自媒体有帮助的网站和相关信息: 10 分钟在网站上增加一个 AI 助手: 方案概览:在网站中引入一个 AI 助手,只需 4 步。 创建大模型问答应用:先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。 搭建示例网站:通过函数计算,快速搭建一个网站,模拟企业官网或者其他站点。 引入 AI 助手:通过修改几行代码,实现在网站中引入一个 AI 助手。 增加私有知识:准备一些私有知识,让 AI 助手能回答原本无法准确回答的问题,帮助更好地应对客户咨询。 AI 绘画在自媒体中的应用: 个体方面:成为自媒体博主、个体商户应用、实体印刷(T恤,杯子实物等)、AI 摄影、设计接单、AI 定制萌娃头像、电商商品、自媒体素材、AI 服装预售、AI 视频接单、培训老师。 公司方面:设计质量和效率提升、AI 绘画相关应用开发、CV 方面算法应用。 2024 年 10 月 8 日的相关信息: 《》鼓励每个人建立自媒体。AI 播客方面,推出中文版 Demo 并吸引大量参与者。同时,开设了 AI 酒吧 Bar2AGI,成为行业交流的新场所。参与了活动,包括 Demo Inn 和云栖大会,感受到行业的快速发展和乐观氛围。 《》国庆节期间的重要 AI 新闻,如 OpenAI 推出 Canvas 功能和实时 API,微软发布新版 Copilot,具备深度系统集成和实时语音功能;Meta 发布 Meta Movie Gen 视频生成模型,自动配音质量高;LiquidAI 发布非 Transformer 模型 LFMs,推理效率显著提高。此外,Sora 项目负责人离职、多个新模型和工具发布,以及 OpenAI 完成新一轮融资,估值达到 1570 亿美元。
2025-01-14
工作流对于智能体有什么作用
工作流对于智能体具有以下重要作用: 1. 可视化组合功能:工作流就像可视化的拼图游戏,能将插件、大语言模型、代码块等功能组合在一起,创建出复杂且稳定的业务流程。 2. 应对复杂任务:当面对多步骤且对结果要求严格的任务时,如结果需准确无误、格式正确,工作流能发挥重要作用。 3. 构成基本单元:工作流由多个小块块(节点)组成,这些小块块包括大语言模型、自定义代码、判断逻辑等,是工作流的基本单元。 4. 明确起点和终点:工作流有开始和结束的特定小块块,开始的小块块包含输入信息,结束的小块块展示运行结果。 5. 信息传递与自定义:不同小块块工作所需的信息有引用前面小块块给出的信息和自行设定的信息两种。 在具体应用中,如在品牌卖点提炼中,工作流确定了以品牌卖点提炼六步法为核心的流程,并将其他分析助手加入其中,包括品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,还包括一些未在结构中体现但有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 在 Bot 智能体中,Bot 由 4 个不同的工作流组成,会根据用户的不同输入调用不同工作流完成自动化任务,如在不同的查询和发送需求场景下,分别采用相应的工具。同时,还通过变量设置、开场白设置等与工作流中的信息交互联动,提升用户交互体验。
2024-11-23
agent用于数据分析
以下是关于 agent 用于数据分析的相关信息: 在 Coze 应用与飞书多维表格结合的场景中,使用 Coze、飞书多维表格、自定义 AI 字段捷径(也称为 Agent)来实现数据的高效抓取与批量 AI 化处理。其中涉及 Coze 定义智能体并发布到飞书多维表格字段捷径,在多维表格中使用和配置自定义的 AI 字段捷径,通过 Coze 应用的交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及利用多维表格仪表盘对数据进行可视化。此应用旨在展示如何最高效率使用 AI,并将方案泛化到实际工作中,选择了不懂代码即可完成的技术路线。 Google Colab 推出了 Data Science Agent(AI 数据分析助手),它基于 Demini,能够加速数据科学工作流程。此代理使用 Gemini 充当编码伙伴,向 18 岁以上、使用特定国家/地区和语言的 Colab 用户推出。工作流程为:打开一个空白的 Colab 笔记本,上传数据文件,描述目标,如“可视化趋势”“构建和优化预测模型”等,然后 Data Science Agent 会根据需求生成必要的代码、导入库和分析数据。 Xiaohu.AI 的 Pro 会员有新功能 Agent,它可自动执行浏览器任务,如餐饮预定、外卖下单、购物及旅行安排,还新增了 Operator 功能,可显示操作过程,允许用户控制屏幕并分享已保存任务。
2025-03-23
如何利用ai进项数据分析并制图
利用 AI 进行数据分析并制图可以参考以下步骤: 1. 明确数据需求和目标:确定您想要分析的数据内容和期望得到的图表类型,例如柱状图、饼图等。 2. 数据准备:确保数据的准确性和完整性,查看数据列名是否与预期一致。 3. 选择合适的 AI 工具:如一些具备数据分析和绘图功能的软件或平台。 4. 分析数据:对数据进行深入研究,例如将多选答案进行合理拆分和统计。 5. 生成图表:根据分析结果,使用 AI 工具生成相应的图表,并注意图表的标题、标签和字体等显示效果。 6. 调整和优化:如果生成的图表不符合要求,需要进一步调整和优化,如重新分析数据、选择不同的图表类型等。 在实际操作中,例如在“教师的 AI 减负指南生成式人工智能在教学中的应用”中,对于“此前您是否使用过生成式 AI 大语言模型?”这样的问题,可以统计不同选择的次数并绘制柱状图或饼图。对于“AI 助教在以下哪些方面对您的学习有帮助?”这样的多选问题,需要将答案合理拆分后进行统计和制图。 在 AI 绘图方面,如参加相关比赛,需要明确创作主题,确定主体,增加叙事感,注意图片的构图、色彩和光影等构成因素,合理运用构图方式,如点中心构图、九宫格构图等。推荐在 AI 绘图中使用中景及以上景别。
2025-03-18
如何利用ai进项数据分析
利用 AI 进行数据分析可以参考以下实际案例与技巧: 1. 流程: SQL 分析:用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL 后执行,将结果数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 个性化分析:用户上传文件,如有需要可简单描述数据、字段意义或作用辅助分析。前端解析用户上传的文件,传给 GPT 分析数据,后续步骤与 SQL 分析一致。 2. 问题与技巧: SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因不能相信用户输入,防止恶意操作。 到 AI 分析步骤拼接上下文,包含表结构信息和 SQL 语句,助 GPT 更好理解数据和字段意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,最好告知 GPT 只允许查询的字段或使用的 SQL 函数,控制生成内容。 个性化分析: 用户上传的数据解析后判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完直接用于渲染数据图表,无需后端返回。 支持用户补充输入,简单描述数据、字段意义或作用,辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,可输入特定指令帮助 AI 准确分析。 原文地址:https://mp.weixin.qq.com/s/Fld25MxyoFEnUbnDmGJNXg 本文作者:krryguo,腾讯 IEG 前端开发工程师。声明:本文涉及与 ChatGPT 交互的数据已严格脱敏。
2025-03-18
数据分析 转成可视化图
以下是关于将数据分析转成可视化图的相关内容: 实践 1:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴图形。 打开数据集,分析数据: 发现第一行有着 Formatted Date,Precip Type,Temperature 表头,这三列与数据可视化目的明显关联,Formatted Date 数据提取整理后可作横坐标,Precip Type 数据反映月降雨天数,Temperature 数据反映气温趋势。 新建 python 文件,开始编程: 选择 python 文件,命名保存。 调用库: 读取数据:文件格式为 csv,可用 pandas 库。 数据处理:处理出 x 轴及有关气温、降雨的数据。 创建图表、添加标题与图例、保存并显示图形。 试运行与 Debug: 可能出现左纵坐标数据明显有误的情况,如降雨天数数值过大。原因是一天记录了多个时刻的天气状况,而写代码时未考虑,直接把出现“rain”的都记录了进去。 给 MarsCode 说明问题,重新生成代码,结果符合预期,可视化目的实现。 ChatGPT 助力数据分析:实际案例与技巧 问题与技巧: 公用逻辑: 在 user prompt 限定 SQL 和数据分析及其返回格式,不用 system prompt 的原因:一是 system prompt 已承载表结构信息;二是 user prompt 遵循力度更高。 分开定义单维度数据和多维度数据的 prompt,而不直接丢给让 GPT 判断的原因:存在两种结果导向的 prompt 约有 50%几率 GPT 会犯傻,最好在发送请求前用条件运算符区分格式的 prompt,代码判断后决定使用。 前端渲染图表:SQL 分析的接口或个性化分析解析的数据文件所获得的 tableData,其格式与渲染表格的格式一样为对象数组。让 GPT 判断出对象的 key 值映射:keyMap,得知维度、数据项、数据值的 key,就可拿到并处理成图表所需的 series、xAxis。 流程: 第一个 user prompt:限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列:数据项、数据值,且不能直接查询长类型字段。 system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 校验 GPT 生成的 SQL,不通过直接返回提示,通过再执行 SQL 查询数据。 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。采取分开定义单维度数据和多维度数据的 prompt,根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt,再传递给 GPT。 结果数据 tableData 跟随接口一起返回到前端,已通过 SQL 查询的数据,不能让 GPT 又生成一次。
2025-03-16
帮我生成一个本科的论文题目,专业是学前教育,要有数据分析
以下为您生成几个关于学前教育专业且包含数据分析的本科论文题目,供您参考: 1. 《基于数据分析的学前教育课程设置对幼儿发展的影响研究》 2. 《学前教育中幼儿游戏行为的数据分析与教育策略研究》 3. 《通过数据分析探究家庭环境对学前儿童心理健康的影响》 4. 《基于大数据分析的学前教育师资培训效果评估》 5. 《利用数据分析研究学前教育机构设施配备与幼儿学习效果的关系》
2025-03-16
AI可以做数据库的数据分析
AI 可以用于数据库的数据分析,以下是相关内容: ChatGPT 助力数据分析的流程: 逻辑流程图如下: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 相关问题与技巧: 1. SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因为不能相信用户输入,防止恶意操作。非查询类 SQL 坚决不通过,提示不支持此类请求。 到 AI 分析步骤拼接上下文,是为了让 GPT 更好理解数据和字段的意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,防止 token 消耗过多。最好告诉 GPT 只允许查询哪几个字段,或者用哪几个 SQL 函数,尽量让 GPT 生成可控。 2. 个性化分析: 用户上传的数据解析后需判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完可直接用于渲染数据图表,无需后端再返回。 支持用户补充输入,可简单描述数据、字段意义或作用,用于辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,为保证准确性,可输入“以 xxx为维度分析”或“这是 xxx 数据”。 AI 术语库中的相关术语: |术语 ID|原文|译文|领域|易混淆|缩写|不需要提醒| |||||||| |ROW1|DataDriven Spectral Analysis|数据驱动的光谱分析|AI||| |ROW1|DataMining|数据挖掘|AI|1|| |ROW1|Database|数据库|AI||| |ROW1|DE Algorithm|差分进化算法|AI|1|| |ROW1|Deeplift|DeepLift 模型|AI||| |ROW1|Dendrogram|树状图|AI||| |ROW1|Density Functional Theory|密度泛函理论|AI||| |ROW1|DensityBased Spatial Clustering Of Applications With Noise|DBSCAN 密度聚类|AI||| |ROW1|Descriptor|描述符|AI||| |ROW1|DFT Calculations|DFT 计算|AI||| |ROW1|Dice Similarity|戴斯相似度|AI||| |ROW1|Differential Evolution|差分进化|AI|||
2025-03-14
如何学智能体
学习智能体可以从以下几个方面入手: 1. 系统性学习:互联网上关于智能体的介绍虽多,但系统性的讲解较少。可以通过专门的系列文章,从基本概念出发,逐步深入到核心技术、应用场景以及未来发展趋势,构建完整的认知。 2. 了解发展历程:智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 3. 掌握特点:基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 4. 注重核心:核心在于有效控制和利用大型模型,这通常涉及精确的提示词设计,其直接影响智能体的表现和输出结果。 5. 实践学习:通过具体项目推进实际能力的提升,采用任务导向制,以赛促练。还可以加入相关团队,与同频共振的伙伴共同学习。
2025-03-30
什么是智能体?
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常借助传感器)并采取行动(通常通过执行器)来达到目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分,包括规划、子目标和分解、反思和完善、记忆(短期记忆和长期记忆)、工具使用等。 简单理解,智能体就像 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。例如在 C 端,有社交方向的应用,用户注册后先创建自己的 Agent,让其与他人的 Agent 聊天,然后真人介入;在 B 端,有帮助商家搭建 Agent 的机会。
2025-03-30
智能体的发展方向
智能体的发展方向主要包括以下几个方面: 1. 在品牌卖点提炼中的应用: 构建智能体时,对结构的理解和控制至关重要,可通过不断迭代完善单点。 品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性,如电商产品和线下实体服务行业的不同触点和人员情况。 营销管理结构化提示词中,不要依赖举例,避免限制 AI 发散思维,智能体作为灵感助手辅助决策。 2. 一分钟提升认知系统: 具有创新性、实用性、互动性和可扩展性。 能为用户提供高效学习体验、满足不同需求、提供个性化学习方案。 未来将进一步完善知识库、引入先进技术、提供更多个性化方案。 注重用户体验,具有强大知识储备和高效学习机制,能提升用户认知水平,有良好扩展性和创新潜力。 3. DeepSeek R1 及智能体: R1 与 V3 效果对比:V3 中规中矩,R1 思考慢但答案更具针对性和实用性。 R1 的推理特点:类似人类慢思考,结合行业特点给出重要事项和先后顺序。 模型的运算原理:快思考是概率预测,慢思考在概率预测基础上做二层逻辑。 不同模型的适用:指令遵循领域 instruct 模型效果好,推理和创造性问题适合慢思考推理模型。 模型的未来发展:DeepSeek R1 的强化学习方式带来新思路,大模型可通过自学习、增流蒸馏等方式进化和迁移知识能力。 大语言模型特点:DeepSeek R1 是纯文本类大语言模型,原生无识别图、读网页等能力。 与聊天机器人区别:网页聊天机器人做了很多智能体处理,大语言模型本身未被训练。 记忆处理方式:有多种实现长记忆的方案。 智能体构成:由让大语言模型感知外部世界的工具、输出结果的能力、记忆世界观的浓缩规划以及大语言模型本身构成。 智能体重要性:未来编程将变成编造智能体,智能体是承载 AI 应用落地的最终形态。
2025-03-29
Coze上有哪些高赞的智能体?
以下是 Coze 上的一些高赞智能体及相关内容: 此外,以下是一些常见的 Agent 构建平台: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富插件工具,能拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 Coze 是字节跳动推出的强大的 AI 聊天机器人构建平台,具有多种功能,如智能体、插件、知识库、工作流、图像流和记忆模块。智能体是其核心功能之一,基于大型语言模型构建,具有多种智能行为特征,能完成多种复杂任务,分为单智能体和多智能体模式。单智能体解决复杂问题需长记忆能力,多智能体扩展能力好,能共同解决复杂问题。
2025-03-29
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
COZE智能体全自动制造视频发布媒体
以下是关于 COZE 智能体全自动制造视频发布媒体的相关内容: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,还提供了相关教程。 先看效果: 可查看 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 工作流调试完成后,加入到智能体中,可选择工作流绑定卡片数据。 选择发布渠道为飞书多维表格,填写上架信息等待审核,审核通过后即可使用。 3. 在多维表格中使用字段捷径,引用该智能体。 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,自动调用工作流生成视频。 进行表单分享,实现填写表单自动创建文案短视频的效果。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 创建智能体: 1. 知识库 本次创建知识库使用手动清洗数据。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-03-28
普通产品经理转型AI产品经理需要怎么进行
普通产品经理转型为 AI 产品经理,需要关注以下方面: 1. 技术原理: 了解思维链,谷歌 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 熟悉 RAG(检索增强生成),外部知识库切分成段落后转成向量,存在向量数据库,用户提问时段落信息会和问题一起传给 AI,可搭建企业和个人知识库。 掌握 PAL(程序辅助语言模型),2022 年的论文提出,对于语言模型计算问题,借助如 Python 解释器等工具而非让 AI 直接生成结果。 知晓 ReAct 框架,2022 年《React:在语言模型中协同推理与行动》的论文提出,核心是让模型动态推理并与外界环境互动,如用搜索引擎搜索关键字观察结果,可借助 LangChain 等框架简化构建流程。 2. 知识储备: 关注并阅读技术论文,了解技术脉络,但小白直接看有难度,可借助 AI 辅助阅读,同时要完成一定知识储备。 林粒粒呀的相关视频是很好的科普入门。 总之,转型需要对相关技术原理有深入理解,并积累足够的知识。
2025-03-28
ai教育相关产品
以下是一些与 AI 教育相关的产品信息: 文章《Koji:当大家反对用 AI 育儿时,它却“救”了我两次!》中提到了 Khanmigo AI 这款产品,它能够引导学生自己寻找答案,培养批判性思维能力。 在【已结束】AI 创客松中,有以下与儿童教育相关的小组和想法: 智慧启蒙家小组,计划开发针对儿童的 AI 教育游戏、创建 AI 驱动的儿童教育平台、设计儿童心理健康监测和干预系统。 多元探索者小组,打算开发基于 multiagent 生态的游戏化 AI 学习平台、创造模拟真实世界交互的 multiagent 系统、设计创新 AI 商业模型。 教育领域的 Top10 AI 产品数据如下: QChat,4 月访问量 14220 万次,相对 3 月变化 0.068。 CheggMate,4 月访问量 4906 万次,相对 3 月变化 0.042。 Khanmigo,4 月访问量 4570 万次,相对 3 月变化 0.015。 Brainly:AI Homework Helper,4 月访问量 3102 万次,相对 3 月变化 0.023。 Turnitin,4 月访问量 1677 万次,相对 3 月变化 0.149。 WolframAlpha,4 月访问量 983 万次,相对 3 月变化 0.054。 gauthmath,4 月访问量 656 万次,相对 3 月变化 0.558。 Socratic by Google,4 月访问量 467 万次,相对 3 月变化 0.037。 Aistote,4 月访问量 321 万次,相对 3 月变化 0.207。 PTE APEUni,4 月访问量 321 万次,相对 3 月变化 0.198。
2025-03-28
产品经理的AI工具
以下是一些适用于产品经理的 AI 工具和相关应用场景: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com) 此外,银海分享了用 10 个 Prompt 提示词做产品经理 AI 助手,效果平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。产品体验地址:https://www.pmai.cn/?utm_source=qoZaR5O 。 向阳乔木老师调研和分享了以下产品经理工作流程优化的相关内容: 1. 辅助精读论文:能帮翻译、拆解公式,分析代码等。工具:https://scispace.com 2. 写一些小脚本:写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 产品宣传文案:根据产品宣传渠道写营销文案、营销邮件、产品上架文案等。 4. 调研问卷设计/整理:生成调研框架,回收非结构化问卷,按指定框架生成指定表头表格。 5. 竞品分析:用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据。如 DAU、用户结构、市场占比等等。 6. 解释专业名词:很多垂直领域,都有不少缩写或行业黑话,可以用 ChatGPT 解释举例、给场景说明。 另外,写完 PRD 后,可以让 GPT 从产品和研发两个视角写逻辑代码,既能发现自己产品逻辑表达问题,也能方便以后 QA 同学测试。
2025-03-27
作为储能行业的软件平台产品经理,如何将AI融入产品中;当今世界(2025年3月27日),AI会对传统行业的平台软件产品产生哪些影响
在当今世界(2025 年 3 月 27 日),AI 对传统行业的平台软件产品产生了多方面的影响。例如,在储能行业,大模型训练与推理对电力需求剧增,尤其需要稳定、低成本的大规模供电,这使得调度与储能变得关键。同时,AI 时代对能源低成本与稳定性的需求极其旺盛,核能(尤其小堆)及储能、电动车电池都将持续发展。 对于储能行业的软件平台产品经理,将 AI 融入产品可以从以下几个方面考虑: 1. 利用 AI 进行电力需求预测和优化调度,以提高供电的稳定性和效率。 2. 借助 AI 技术对储能系统进行智能管理和优化,降低电池成本。 3. 通过 AI 分析用户行为和需求,为用户提供个性化的能源管理方案。 4. 利用 AI 监测和诊断储能设备的运行状态,提前预警故障,提高系统的可靠性。
2025-03-27
我想用ai生成网站的特效,应该使用哪些ai产品
以下是一些可以用于生成网站特效的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计并利用 AI 建议。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 另外,以下产品也可能对生成网站特效有帮助: 1. Dora AI:可以通过一个 prompt,借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 2. Magic Editor for Google Photos:可对照片进行局部修改。 3. MusicLM:文本生成音乐,当前可在 AI Test Kitchen with Google 试用。 4. Gen AI for Android Magic Compose:自动回复信息;Gen AI for Wallpaper 可生成手机壁纸。 5. ML Hub for Developers:提供 ML 模型训练与部署一站式服务。 6. Immersive View for Google Map:仿真 3D 沉浸式地图。 7. 「Help me write」in Gmail:电子邮件写作助手(文字生成)。 您可以访问相关网站获取更多详细信息和试用这些产品。
2025-03-27
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26