Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数据分析师常用的prompt

Answer

以下是数据分析师常用的 prompt 相关内容:

  1. ChatGPT 助力数据分析:
    • 第一个 user prompt:限定 SELECT SQL,不要用 SELECT*查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段(如 mediumtext/longtext),可用 count/substring 等函数查询。
    • system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。
    • 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。
    • 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表,根据结果数据 tableData 的维度选择对应的 prompt 传递给 GPT。
    • 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。
  2. 数据:数据分析 prompt:https://notion.castordoc.com/gpt-prompts,castordoc 整理的适合数据团队日常使用的 prompt 案例。
  3. 潘帅:手把手分享法律人如何用好 AI—Prompt 篇:
    • 律师常用 Prompt 场景:
      • 案例检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。
        • Prompt 指令词示例:
          • 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。
          • 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。
          • 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。
          • 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。
        • Promopt 结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】
      • 类案检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。
Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 助力数据分析:实际案例与技巧

1.第一个user prompt:限定SELECT SQL,这里告诉它:不要用SELECT*来查询全部列,且仅回复一条SELECT SQL语句。至少查询两列:数据项、数据值,且不能直接查询如mediumtext/longtext这样的长类型字段,可以用count/substring等函数查询这些长类型列。2.system prompt是表结构信息,如有难以理解的字段可以告诉GPT字段的意义,有多个表可分开描述。3.需校验GPT生成的SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行SQL查询数据。4.数据分析的user prompt:提示数据分析,限定返回的JSON格式:conclusion、keyMap、title。keyMap的作用:数据key的映射,获取结果数据对应的维度、数据项、数据值的key值,用于映射数据渲染图表。由于支持多维数据,单维度数据的keyMap没有维度项,就存在让GPT返回两种结构的情况。这里我采取分开定义单维度数据和多维度数据的prompt,根据结果数据tableData的维度,用条件运算符选择对应的prompt,再传递给GPT。5.结果数据tableData是跟随接口一起返回到前端,已经通过SQL查询的数据,不能让GPT又生成一次,否则非常耗时。

数据:数据分析prompt

https://notion.castordoc.com/gpt-promptscastordoc(做数据发现、数据治理的一家公司)整理的适合数据团队日常使用的prompt案例,

潘帅:手把手分享法律人如何用好AI — Prompt篇

律师常用Prompt场景Prompt的艺术在于如何精准地与AI进行有效沟通。在法律领域,有效的Prompt能够引导AI提供更加精确和相关的输出。场景一:案例检索案例检索最好是使用法律行业垂类的AI产品,通用型AI要么查不出来,要么数据不全,要么是生成式的内容不能满足需求。1.Prompt指令词:请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。2.预计效果:AI系统将检索相关数据库,找出符合要求的判例,并提炼出这些案例中有关“混淆可能性”标准的关键判决理由和结果,形成摘要报告。3.其他例子:(1)Prompt指令词:检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。(2)Prompt指令词:比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。(3)Prompt指令词:研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。4.Promopt结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望AI做的事情】场景二:类案检索案例检索最好是使用法律行业垂类的AI产品,通用型AI要么查不出来,要么数据不全,要么是生成式的内容不能满足需求。1.Prompt指令词:

Others are asking
产品经理如何验证prompt效果
产品经理验证 prompt 效果可以参考以下方法: 1. 以自动驾驶产品为例,先向 ChatGPT 阐述宏观的业务背景,如“我们公司研发 L4 级别的自动驾驶卡车系统。我们的车辆拥有一辆 L4 自动驾驶车辆所需要的算力,传感器与能力,但是目前车上会有司机作为安全员,自动驾驶系统会辅助司机的驾驶,帮助卡车司机开车更轻松,更安全,更节油。我将提供产品经理日常工作中的一些实际问题。这可能涉及设计具体的自动驾驶功能,进行数据分析,分析具体的行驶场景并提供有效的反馈等。你能够明白这件事吗?”然后通过 ChatGPT 的回应来检验效果。 2. 对于 Claude ,为每个子任务设计专门的 Prompt ,如市场分析、产品特性提炼、渠道策略、创意概念、预算规划等,然后整合结果。建立评估体系,定义成功标准如准确性、相关性、创新性等,实施 A/B 测试,收集反馈。 3. 对于渐进式引导法,若提示词效果不符合预期,可与 AI 再进行几轮对话调整输出结果。最终询问 AI “怎么样修改现有的 Prompt ,可以让你稳定输出当前的预期”来迭代 Prompt 。得到 Prompt 后,新开 1 个 AI 对话,输入 Prompt 验证其可用性和稳定性。例如输入 MECE 法则进行测试。
2025-03-12
怎么写好prompt
写好 prompt 是一个关键且重要的步骤,它决定了 AI 模型如何理解并生成文本或视频。以下是一些编写 prompt 的建议和方法: 编写 prompt 的建议: 1. 明确任务:清晰地定义任务,如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 prompt 中明确指出。 5. 使用示例:若有特定期望结果,提供示例帮助 AI 理解需求。 6. 保持简洁:避免过多信息,以免 AI 模型困惑。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整 prompt,可能需多次迭代。 优化和润色 prompt 的方法: 1. 明确具体描述:使用更具体、细节的词语和短语,而非笼统词汇。 2. 添加视觉参考:插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序,找到准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 prompt:将复杂需求拆解为子 prompt,逐步引导生成。 7. 参考优秀案例:研究有效的范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,根据输出效果反馈持续完善。 在即梦 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令,类似给 AI 的提示,包含主体、运动、风格等信息,借此控制和指导生成内容,作用十分重要,是表达需求的方式,影响视频内容和质量。您可以将其理解为:将输入的文字变成对应的画面和运动形式。图片生视频和文本生视频的 prompt 输入位置也有所不同。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-09
Prompt提示词
以下是关于 Prompt 提示词的相关知识: 一、如何编写提示词 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等要求。 5. 使用示例:如有特定期望结果,提供示例。 6. 保持简洁:避免过多信息导致模型困惑。 7. 使用关键词和标签:帮助模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整。 二、如何润色或优化提示词 1. 明确具体描述:使用更具体、细节的词语和短语。 2. 添加视觉参考:插入相关图片参考。 3. 注意语气和情感:用合适的形容词、语气词调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序。 5. 增加约束条件:如分辨率、比例等,避免意外输出。 6. 分步骤构建:将复杂需求拆解为子提示词,逐步引导生成。 7. 参考优秀案例:研究有效的范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,根据效果反馈完善。 三、PixVerse V2.5 提示词技巧(基础篇) 1. 提示词在文生视频、图生视频和角色生视频中广泛使用,准确编写可减少试错成本。 2. 什么是提示词:在 AI 视频生成中,是用于指导或引导模型生成特定视频内容的描述性文本或指令,需描述想要生成的视频画面,一般包含描述性文字、指令参数、情感氛围、参考风格。 3. 提示词语言:推荐使用英文输入,效果最佳,若不熟悉英文,也可用其他语言,模型可处理任何语言输入。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
Prompts(提示词)| 社区内prompt框架课程收录
以下是关于 Prompt(提示词)的相关内容: 一、Prompt 之道:清晰表达 1. 如何清晰表达 各种框架能帮助您将脑海中的想法通过特定角度描述出来,比如明确要做的事情、背景、目标、任务、数据和输出等。这些框架虽表述不同,但作用相似,能比空想更高效。 您可以在使用框架时,换不同预设角度描述同一物体。例如,去年有人用 langGPT 的框架模拟善解人意的老师讲解任何学科的概念。 2. 拓展阅读 :社区内 prompt 框架课程收录 :各个场景提示词收录 此外,还有李继刚关于文生文中 prompt 的道、术、用的万字说明,相关链接如下: https://mp.weixin.qq.com/s/R8UbrixkKHXE4dnVt0VMvw 豆包网页端:https://www.doubao.com/chat/?channel=browser_landing_page 豆包桌面客户端:
2025-03-06
Prompt 有哪些范式
以下是关于 Prompt 范式的相关内容: 基础篇: 起手式因人而异,可根据不同作图需求尝试不同场景下的“范式”,如面向人像、风景、物品生成等。 人像生成的反向提示词包括不要出色色、不要出错手错脚错身体、不要低质量图、不要水印等,也鼓励自行梳理。 其他注意事项:越重要的 tag 越往前放;同类型 tag 放在一起;控制 tag 总数在 75 个以内;无关紧要的 tag 不要留。 原理与应用: 简单来说,Prompt 是和大模型交互的语言模板,用于输出对大模型响应的指令,提升回答准确性。 从专业角度,Prompt 给大模型提供模板,包括要求、输入和输出限制,让大模型在限制下得出概率最大的答案。 法律人视角: Prompt 指给人工智能系统提供的信息或问题,引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE,包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。并分别举例说明了每个部分的具体内容。
2025-03-05
我需要一套帮我总结论文,阅读论文的最佳prompt
以下是为您提供的一套帮助总结和阅读论文的最佳 prompt 相关内容: 一、李继刚等的 prompt 最佳实践 对于给定的论文链接,总结如下: 1. 提出了基于 GPT3 的无代码聊天机器人设计工具 BotDesigner。 2. 创建了 Conversation 视图和 Error Browser 视图。 3. 观察了 10 名非专家提示设计师执行聊天机器人设计任务的行为,得出相关结论,如参与者能够进行机会性的提示迭代设计,但在生成、评估提示有效性和解释提示效果方面存在困难,倾向于过度推广和从人类交流角度过滤提示设计等。 二、小七姐的 Prompt 喂饭级系列教程小白学习指南(二) 1. 让 AI 帮您阅读文档时,可使用简单的 Prompt,如:于是这个提示词解决了你自己,和任何收到你 Prompt 的人微调几个关键信息就能自动让 GPT 或者 Kimi 帮你阅读一篇论文而且生成不错的总结啦! 2. 结合自己的生活或工作场景想一个能简单自动化的场景,例如自动给班级里的每个孩子起个昵称、自动排版微信群经常发的运营小文案等。 3. 选择一个好上手的提示词框架,如情境。 三、学术场景数据处理 1. 论文总结:GLM4Plus 结合良好的提示词能够帮助学生快速总结论文内容,提高论文梳理的效率。 2. 论文翻译:GLM 结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。 3. 论文内容扩写润色:精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。例如针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,将论文中的结论部分润色成适合在小红书上分享的生活化内容。
2025-03-05
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
请向中老年人自媒体博主推荐常用有效、简单便捷的几个AI工具
以下是为中老年人自媒体博主推荐的常用有效、简单便捷的 AI 工具: 1. 创作方面: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity。 图片处理:DallE、Leonardo、BlueWillow、Midjourney。 版权写作:Rytr、Copy AI、Wordtune、Writesonic。 设计:Canva、Clipdrop、Designify、Microsoft Designer。 网站搭建:10Web、Framer、Hostinger、Landingsite。 视频处理:Klap、Opus、Invideo、Heygen。 音频处理:Murf、LovoAI、Resemble、Eleven Labs。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple。 自动化工具:Make、Zapier、Bardeen、Postman。 市场营销:相关工具未明确提及。 2. 数字人工具: 开源且适合小白用户,特点是一键安装包,无需配置环境,简单易用。功能包括生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。系统兼容 Windows、Linux、macOS,模型支持 MuseTalk(文本到语音)、CosyVoice(语音克隆)。使用步骤为下载 8G+3G 语音模型包,启动模型即可。GitHub 链接: 。 3. 视频生成工具: Google Veo 2,生成的视频接近真实,几乎难以分辨,适合创作和内容制作。相关链接:
2025-02-25
常用的提示词框架有哪些?
常用的提示词框架有以下几种: 1. CRISPE(Capacity and Role,Insight,Statement,Personality,Experiment) 2. BROKE(Background,Role,Objectives,Key Results,Evolve) 3. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填) 4. 情境
2025-02-24
常用的AI助手
以下是一些常用的 AI 助手: 辅助编程的 AI 产品: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 营销领域的 AI 产品: Synthesia:允许创建 AI 生成的高质量视频,包括数字人视频,多种定价计划。 HeyGen:基于云的 AI 视频制作平台,可生成数字人视频。 Jasper AI:人工智能写作助手,用于生成营销文案等。 Copy.ai:AI 营销文案生成工具,有免费和付费计划。 Writesonic:AI 写作助手,专注营销内容创作。 更多营销产品可查看:https://www.waytoagi.com/sites?tag=8 。这些工具能帮助营销人员高效创作,根据需求选择。 AI 与宠物结合的方式: AI 宠物助手:基于自然语言处理和计算机视觉,帮助主人照顾宠物,如识别情绪、提供饮食建议、监测健康状况。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验。 AI 宠物图像生成:使用生成式 AI 模型生成宠物形象图像,定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术开发辅助诊断系统,提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉分析行为模式,帮助主人了解宠物需求和习性。 学习路径建议:掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术;了解宠物行为学、宠物医疗等相关知识;关注业内先进案例;尝试开发原型并迭代优化。AI+宠物是新兴赛道,充满想象空间,可开发出有趣有用的应用。
2025-02-17
目前有哪些常用的AI
目前常用的 AI 包括以下方面: 应用场景: 医疗保健:医学影像分析辅助诊断疾病、加速药物研发、提供个性化医疗方案、控制手术机器人提高手术精度和安全性。 金融服务:风控和反欺诈、信用评估辅助贷款决策、投资分析、提供 24/7 客户服务并回答常见问题。 零售和电子商务:产品推荐、改善搜索结果和提供个性化购物体验、动态定价、提供聊天机器人服务。 制造业:预测机器故障进行维护、检测产品缺陷提高质量、优化供应链、控制工业机器人提高生产效率。 交通运输:尚未详细列举。 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格。 Excel 相关的 AI: Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术进行数据分析和决策支持。 Microsoft 365 Copilot:整合 Word、Excel 等办公软件,通过聊天形式完成任务。 Formula Bot:提供数据分析聊天机器人和公式生成器功能。 Numerous AI:支持 Excel 和 Google Sheets,能生成文本内容、执行情感分析、语言翻译等。
2025-02-17
ai换脸 常用工具
以下是一些常用的 AI 换脸工具及相关操作方法: 1. facefusion 工具: 云服务解决方案: 选择 AutoDL 平台(官网:https://www.autodl.com/home ),注册后在算力市场中选择能接受价格且 GPU 配置较高的算力服务器。 在算法社区查找 facefusion 镜像,点击右侧合适的镜像(左侧的可能有问题)。 点击右下角的创建实例按钮,创建并启动实例(即启动一台服务器)。 点击快捷工具中顶部的 JupyterLab 打开工具,通过终端输入以下命令: 查看文件列表:输入“ls”并按回车,显示当前位置所在目录下的文件列表。 进入 facefusion 目录:输入“cd facefusion”并按回车,进入程序目录。 启动 facefusion:输入“python./run.pyexecutionproviders cuda cpu”(注意后面的参数“executionproviders cuda cpu”非常重要,如果不加“cuda”,默认不使用 GPU 能力,推理将非常慢)。 当出现提示信息时,说明启动成功。 打开 facefusion 软件,返回实例列表,点击自定义服务按钮,会打开新的浏览器窗口,通过 web 浏览器访问 facefusion 提供的 UI 界面,上传准备好的图片、视频,在右侧可看到预览效果,点击下方的开始按钮执行换脸处理。 本机解决方案: 该软件需要 python 环境及安装视频解码器等多个依赖软件,需要一定编程知识,可参考网站 https://docs.facefusion.io/ 进行本地安装。 由于 facefusion 的运行推理计算速度非常依赖 GPU,若本地计算机没有 GPU 或 GPU 显存较小,执行速度将会非常缓慢。 2. 开源地址:https://github.com/facefusion/facefusion
2025-02-16
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
帮我生成一个个人的职业目标为数据分析师,职业规划为想要找到一个计算机行业类的公司,我的优势是社交方面和处理数据方面很强,我的2弱势是不太可以创新
以下是为您生成的以数据分析师为职业目标,且希望在计算机行业公司工作的职业规划建议: 首先,鉴于您在社交和处理数据方面的优势,您可以积极利用这两点。在社交方面,主动参与行业相关的社交活动、线上论坛或社群,扩大人脉资源,这有助于您获取更多的行业信息和潜在的工作机会。在处理数据方面,不断提升自己的专业技能,例如学习更高级的数据处理工具和技术,以提高工作效率和质量。 对于您在创新方面的弱势,建议您多关注行业内的创新案例和趋势,通过学习和模仿来逐渐培养创新思维。可以参加一些创新思维的培训课程或者阅读相关的书籍。 在求职过程中,有针对性地投递计算机行业中对数据分析师有需求的公司。准备一份精心制作的简历,突出您在社交和数据处理方面的优势,并诚实地提及您在创新方面的不足以及您为改进所做的努力。 进入公司后,持续学习和提升自己,与团队成员保持良好的沟通和合作,不断积累项目经验,逐步提升自己在数据分析领域的专业能力和影响力。
2024-11-20
那你可以给我推荐一个学习ai的系列课程,从而让我成为一个更好和更快的数据分析师吗
以下是一些可以帮助你学习 AI 的课程,让你成为更好和更快的数据分析师: 1. 人工智能基础课程 人工智能基础课程是学习 AI 的入门课程,它将帮助你了解 AI 的基本概念和技术,包括机器学习、深度学习、自然语言处理、计算机视觉等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 2. 数据分析基础课程 数据分析是 AI 的重要组成部分,因此了解数据分析的基础知识对于成为一名成功的数据分析师非常重要。你可以学习数据分析的基本概念和技术,包括数据预处理、数据可视化、数据建模等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 3. 机器学习和深度学习课程 机器学习和深度学习是 AI 的核心技术,它们将帮助你了解如何使用数据来训练模型,并使用这些模型进行预测和分类。你可以学习机器学习和深度学习的基本概念和技术,包括监督学习、无监督学习、强化学习等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 4. 自然语言处理课程 自然语言处理是 AI 的一个重要分支,它将帮助你了解如何处理和分析自然语言数据,包括文本分类、情感分析、机器翻译等。你可以学习自然语言处理的基本概念和技术,包括词法分析、句法分析、语义理解等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 5. 计算机视觉课程 计算机视觉是 AI 的一个重要分支,它将帮助你了解如何处理和分析图像和视频数据,包括图像分类、目标检测、图像分割等。你可以学习计算机视觉的基本概念和技术,包括图像处理、特征提取、模型训练等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 6. 实践项目 最后,通过实践项目来巩固你的 AI 知识和技能。你可以参加开源项目、竞赛、实习等,将你所学的知识应用到实际问题中。这将帮助你积累经验、提高技能,并增强你在就业市场上的竞争力。 总之,学习 AI 需要时间和耐心,但是通过系统地学习和实践,你可以成为一名优秀的数据分析师,并在 AI 领域取得成功。
2024-06-13
分布式预训练数据并行
分布式预训练中的数据并行是使用广泛且加速性能良好的并行方法。各个数据切片能完全解耦,只需在每个 minibatch 结束时进行梯度的 allreduce。数据并行分为中心化方式(如 pytorch 里的 DataParallel)和无中心化方式(如 pytorch 里的 DistributedDataParallel)。这两种方式最大的区别在于 gradient 和 reduce 计算过程。DataParallel 需在 forward 之后把所有输出 gather 到 0 号卡上,计算完 loss 之后再 scatter 到各个设备上,然后做 backward 独立计算 gradient,最后搜集 gradient 到 0 号卡,forward 和 backward 间需插入一次通信。DistributedDataParallel 则是每张卡独立做 forward 和 backward,然后对各卡的 gradient 做 allreduce,forward 和 backward 间无需通信。此外,ZeRO 的出发点是优化数据并行中的显存占用,因为在数据并行中,每个 device 上都有完整的权重、梯度和优化器状态信息,较为冗余。
2025-03-12
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11
在本地环境下要搭建一个医疗数据分析的BI智能体,应该怎么做
抱歉,您提供的内容中没有关于在本地环境下搭建医疗数据分析的 BI 智能体的相关有效信息。一般来说,要在本地环境搭建这样的智能体,您可以考虑以下步骤: 1. 明确需求和目标:确定您希望通过智能体实现的具体医疗数据分析功能和目标。 2. 选择合适的技术和工具:例如,选择适合数据分析的编程语言(如 Python)、数据库管理系统(如 MySQL、SQL Server 等)、数据分析库(如 Pandas、NumPy 等)。 3. 数据收集和预处理:获取相关的医疗数据,并进行数据清洗、转换和归一化等预处理操作,以确保数据的质量和可用性。 4. 模型选择和训练:根据需求选择合适的机器学习或深度学习模型,如分类模型、回归模型等,并使用预处理后的数据进行训练。 5. 智能体的开发和集成:使用所选的技术和工具,开发智能体的逻辑和功能,并将其与数据处理和模型预测部分进行集成。 6. 测试和优化:对搭建好的智能体进行测试,根据测试结果对其进行优化和改进。 7. 部署和维护:将智能体部署到本地环境中,并定期进行维护和更新,以适应新的数据和需求变化。
2025-03-11
有没有可以在网上查找小米销量数据并制作图表的ai工具?
以下是一些可以在网上查找小米销量数据并制作图表的 AI 工具: 1. Creately:这是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,可以自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作,官网:https://creately.com/ 2. Whimsical:这是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。它具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能,适合团队工作,官网:https://whimsical.com/ 3. Miro:这是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成,官网:https://miro.com/ 使用这些 AI 工具绘制图表的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-03-10
有没有可以查找数据并制作图表的ai工具?
以下是一些可以查找数据并制作图表的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,在数据处理和报告撰写方面,您可以: 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。
2025-03-10
1.根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求。
很抱歉,暂时没有关于“基于机器学习的中国股市波动率预测与美股市场对比分析”这一论文题目的详细框架相关内容。但我可以为您提供一个大致的框架思路供您参考: 一、引言 1. 研究背景和意义 阐述中国股市和美股市场的重要性 说明波动率预测的价值 2. 研究目的和问题 明确对比分析的主要目标 提出具体的研究问题 二、文献综述 1. 机器学习在股市波动率预测中的应用 总结相关方法和模型 分析其优缺点 2. 中国股市和美股市场波动率的特征 回顾已有研究成果 指出研究空白 三、理论基础与方法 1. 机器学习算法介绍 如随机森林、支持向量机等 解释其原理和适用场景 2. 数据来源和预处理 说明中国股市和美股市场的数据来源 描述数据清洗和预处理的步骤 3. 波动率计算方法 介绍常用的波动率计算指标 四、实证分析 1. 模型构建与训练 运用所选机器学习算法构建预测模型 展示训练过程和参数调整 2. 结果评估与比较 评估中国股市和美股市场预测结果的准确性 进行对比分析 数据图表要求:绘制预测结果与实际波动率的对比图 3. 影响因素分析 探讨可能影响波动率预测的因素 数据图表要求:绘制影响因素与波动率的关系图 五、结论与展望 1. 研究结论总结 概括中国股市和美股市场波动率预测的成果 对比分析的主要发现 2. 研究的局限性 指出研究中存在的不足 3. 未来研究方向 提出进一步研究的建议和方向 以上框架仅供参考,您可以根据实际研究需求进行调整和完善。
2025-03-10