Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请帮我推荐几个最新流程的关于编程方面的AI技术

Answer

以下是一些最新流行的关于编程方面的 AI 技术:

  1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更快、更少地编写代码。
  2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。
  3. CodeWhisperer:亚马逊 AWS 团队推出的由机器学习技术驱动的代码生成器,可为开发人员实时提供代码建议。
  4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。
  5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。
  6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。
  7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。

更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 有没有写代码或辅助编程的 AI 产品?

当然有,以下是一些可以帮助你编程、生成代码、debug的AI工具:1.GitHub Copilot:由全球最大的程序员社区和代码托管平台GitHub联合OpenAI和微软Azure团队推出的AI编程助手。它支持和兼容多种语言和IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。2.通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。3.CodeWhisperer:亚马逊AWS团队推出的AI编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。4.CodeGeeX:智谱AI推出的开源的免费AI编程助手,该工具基于130亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。5.Cody:代码搜索平台Sourcegraph推出的一款AI代码编写助手,该工具借助Sourcegraph强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。6.CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费AI代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。7.Codeium:一个由AI驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。更多辅助编程AI产品,还可以查看这里:https://www.waytoagi.com/category/65以上工具都可以帮助你提高编程效率,但是每个工具的功能和适用场景可能会有所不同,你可以根据自己的需求来选择最适合你的工具。希望这些信息对你有所帮助!

【法律法规】《促进创新的人工智能监管方法》.pdf

20Why Artificial Intelligence Could Speed Drug Discovery,Morgan Stanley,2022.21 AI Is Essential for Solving the Climate Crisis,BCG,2022.22 General Purpose Technologies–Handbook of Economic Growth,National Bureau of Economic Research,2005.23 The UK Science and Technology Framework,Department for Science,Innovation and Technology,2023.24 In 2022 annual revenues generated by UK AI companies totalled an estimated£10.6 billion.AI Sector Study 2022,DSIT,2023.25 DSIT analysis estimates over 50,000 full time workers are employed in AI roles in AI companies.AI Sector Study 2022,DSIT,2023.26 For example,AI can potentially improve health and safety in mining while also improving efficiency.See AI on-side:how artificial intelligence is being used to improve health and safety in mining,Axora,2023.Box 1.1 gives further examples of AI driving efficiency improvements.27 Large Language Models Will Define Artificial Intelligence,Forbes,2023;Scaling Language Models:Methods,Analysis&Insights from Training Gopher,Borgeaud et al.,2022.8A pro-innovation approach to AI regulationfixing programming bugs.The technology can support genetic medicine by identifying links between genetic sequences and medical conditions.It can support people to review and summarise key points from lengthy documents.In the last four years,LLMs have been developed beyond expectations and they are becoming applicable to an increasingly wide range of tasks.28 We expand on the development of LLM and other foundation models in section 3.3.3 below.Box 1.1:Examples of AI opportunitiesAI helps piece together the first complete image of a black hole

Others are asking
最近比较好的微信ai小程序
以下是为您找到的一些微信 AI 小程序相关信息: 妙刷:是一款微信 AI 小程序,有很多基于“多模态应用”方向的探索。已经运行上线了一段时间,积累了多种风格主题,新出的“魔法物品搜集手册”曾小火。 目前暂未获取到更多其他微信 AI 小程序的详细信息。如果您想了解更多关于微信 AI 小程序的内容,建议您通过相关的科技资讯网站或公众号进一步搜索。
2025-03-09
如何通过AI来实现量化
通过 AI 实现量化可以从以下几个方面入手: 1. 量化 AI 助手应用: 详细函数介绍:提供量化 API 中各个函数的详细说明和使用示例。 策略代码生成:根据具体需求,快速生成可用的量化策略代码。 错误解决方案:针对 Python 报错,提供可能的解决方案。 优化建议:帮助优化策略代码逻辑,提升策略性能。 2. 模型量化技术: 将 16 位降至 8 位或 4 位是可能的,但不能使用硬件加速浮点运算。若想对更小的类型进行硬件加速,需使用小整数和矢量化指令集。 量化过程:首先找出权重的最大值和最小值,然后将数值范围划分为整数类型中可用的桶数,8 位为 256 桶,4 位为 16 桶。这就是训练后量化(posttraining quantization),也是量化模型的最简单方法。 量化方法:市面上主要有两类量化方法,如 GPTQ(主要针对英伟达的 GPU)、GGML(侧重于 CPU 优化,主要针对苹果 M1 和 M2 芯片做优化)。 3. 相关产品推荐: Composer Trading:这是一个旨在彻底改变个人创建和管理投资策略方式的平台。它提供由人工智能驱动的策略创建工具,允许用户用自然语言解释目标、策略和风险关注点,AI 辅助编辑器会为其创建策略。该平台还提供各种类别的预构建策略选择,如长期、技术重点和多样化等,用户可以立即进行投资。同时,它强调数据驱动式交易方法,避免情绪或轰动影响。此外,它作为经纪商,提供全自动交易执行,采用无佣金模式,通过简单固定月度订阅透明定价。用户可以在承诺之前免费测试该平台。定制是其关键特性,每个策略都是完全可编辑的,用户可以使用无代码视觉编辑器修改策略、调整参数,并对其进行不同权重或条件应用。该平台还允许根据用户定义的标准从候选者池中进行动态选择。回测可帮助用户学习并调整战略,并且可以将其与基准或其他战略进行比较。Composer 还计算费用、滑点以及战术最终价值,提供潜在结果全面视图。
2025-03-09
我在完成一篇论文,能不能给我一些论文相关的AI提示词
以下是为您提供的一些论文相关的 AI 提示词示例: 1. 对于法律文章写作: 敕令法律文章撰写 author:叁随道人 version:1.0(20240626) language:中文 2. 对于一般性的论文写作: 这意味着您不能期待设计一个完美的提示词,然后 AI 百分百给到您一个完美的符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。您要给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生,您也需要在对话中来限缩自己思维中的模糊地带。 现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前 AI 时代的“机器编程”思路来进行 AI 的“自然语言编程”。对于想要尝试 AI 的朋友们,建议多给到 AI 几轮对话修正的余地,不要期望输入一次提示词 AI 就能给到您想要的东西,毕竟很多时候其实您自己刚开始也不知道自己想要什么。 3. 对于文生图相关的论文: 英文为:,drawing,paintbrush 。括号和:1.2,都是用来增加权重的,权重越高在画面中体现越充分,同样提示词的先后顺序也会影响权重。 反向提示词:NSFw,,(toomany finger
2025-03-08
any recommendation for using AI to create my own website
以下是一些使用 AI 创建自己网站的建议和推荐: Bard 建议使用“给 AI 下具体设计任务”的方式,而不是简单地“要求 AI 直接输出内容”。这可以让 AI 更好地发挥创造力,同时也便于人类对最终输出进行检查和修改。 设计网站 logo 时,应保持简单易记,使用相关符号或图标,选择与技术和信任相关的颜色(如蓝色、绿色、白色),使用一致的字体,并获取他人的反馈。 利用 AI 创建网站时,通过与 AI 交互输入需求可快速创建网站,发布后会获得网址。 代码下载后可能复制容易但修改不易,有的工具可选中特定版块修改,有的则需整体重写。 网站修改的方法如通过浏览器开发者工具修改 logo,可替换图片或删除后上传同名图片。 推荐的网页原型图生成工具包括: 即时设计:https://js.design/ ,是一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 Wix: ,是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 Dora:https://www.dora.run/ ,使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
AI与SAAS结合
AI 与 SaaS 的结合具有以下特点和影响: 1. 像 Microsoft 推出的 Copilot 产品升级,如 Copilot Team 与 Studio,能让 Agent 融入企业内部,实现自动化的会议记录和日程安排,还能设计组织内部自动化流程,帮助操作办公软件。这表明软件应用范式已转移,AI Agent 成为新 SaaS。 2. 对于生成式 AI 对 SaaS 生态的影响,起初认为大公司不会受到太大冲击,因为初创公司和大公司各有优势,初创公司机会在于瞄准可自动化工作领域。但现在不确定是否低估了“AI 原生”的巨大潜力。 3. 二十年前传统软件公司对 SaaS 崛起的态度与如今对 AI 变革的态度可能类似。SaaS 带来了业务模式的全面变革,包括开发方式、市场策略和商业模式的转变,只有极少数传统公司成功转型。 4. OpenAI 的目标明确为 all in AGI,商业模式为 SaaS,直接提供 API,接口设计内部决定,按使用付费。其在一些产品上如 ChatGPT Plus、与第三方插件结合等方面的处理方式较为简单直接。
2025-03-08
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08
有没有ai编程的AI rules
目前关于 AI 编程的 AI Rules 主要有以下内容: 在字节发布的全新 AI IDE Trae 中,由于其过于智能,有时难以控制其立即执行任务,且目前没有全局 AI Rules 的设置,需要用“”来引入规则。 在进行 AI 编程时,应遵循一定的准则。例如,能不编程尽量不编,优先寻找线上工具、插件、本地应用等现成的解决方案,先找现成的开源工具和付费服务,最后再考虑自己编程,且编程时要以终为始,聚焦目标。 在 Trae 中,可以新建一个文件“AI Rules”,将相关规则代码复制进去并保存。在与 AI 沟通需求时引入该文件,AI 会按照规则进行开发。同时,AI 生成的代码可能存在随机性和错误,需要花费时间调试 Bug,可以通过终端、测试网页功能时的“F12”等方式查看报错信息并修复。
2025-03-08
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有适用于让 Cursor 生成您所需 Android 应用的特定提示词。编写这样一个复杂的 Android 应用需要对 Android 开发、网络通信、音频处理和语音识别等多个领域有深入的了解和专业知识。您可能需要逐步向 Cursor 描述应用的架构、各个模块的功能和实现逻辑,例如先描述如何建立与 ESP32 的 WebSocket 连接,如何接收和处理 Opus 数据,如何进行数据转换以及如何调用 Sherpaonnx 进行语音识别等。但需要注意的是,仅仅依靠提示词让 Cursor 生成完整可用的复杂应用可能具有一定的局限性,建议您在具备相关基础知识的前提下,结合 Cursor 的辅助来逐步完成开发。
2025-03-06
我想让cursor帮我编程一个能在Android studio编译的Android应用,它的主要功能是接受esp32通过websocket协议发送过来的opus数据,保存opus并把数据转换成wav,再使用sherpa-onnx语音识别成文字。我该使用什么提示词让cursor帮我写出这个Android应用?
很抱歉,目前没有关于使用 Cursor 生成您所需的这种特定 Android 应用的提示词的相关内容。一般来说,您可以向 Cursor 提供以下关键信息作为提示词的参考: 1. 明确应用的功能需求,如“编写一个在 Android Studio 中编译的 Android 应用,用于接收 ESP32 通过 WebSocket 协议发送的 Opus 数据,保存 Opus 并转换为 WAV 格式,然后使用 Sherpaonnx 进行语音识别成文字。” 2. 描述应用的技术架构和关键技术点,例如“应用需基于 Android 平台,使用合适的网络库处理 WebSocket 连接,采用有效的数据存储方式保存 Opus 数据,利用特定的音频转换库将 Opus 转换为 WAV,以及集成 Sherpaonnx 语音识别库实现文字转换。” 3. 提及开发环境和工具要求,比如“在 Android Studio 开发环境中,遵循 Android 应用开发规范和最佳实践。” 但需要注意的是,Cursor 生成的代码可能并不完全满足您的需求,还需要您进行进一步的修改和完善。
2025-03-06
对于已有编程经验的人群的AI入门推荐
对于已有编程经验的人群的 AI 入门推荐如下: 书籍推荐: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 AI 方面: 《人类简史》:“认知革命”相关章节令人获益匪浅。 《深度学习实战》:梳理了 ChatGPT 爆发前的 AI 信息与实践。 课程与资源推荐: B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 链接:https://space.bilibili.com/402780815/channel/seriesdetail?sid=2762019 Andrej Karpathy 对于大模型的讲解: 油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 资料库推荐:AJ 和众多小伙伴们共创的“🌈通往 AGI 之路”(飞书文档),这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新。 链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e
2025-03-06
AI编程教程
以下为您提供的 AI 编程教程相关内容: 1. 《ShowMeAI 周刊 No.13》中包含两篇优秀的 AI 编程教程,您可以通过原文链接(https://mp.weixin.qq.com/s/D0wX5VSDPZi9Xv15dbuGtA)获取更多详细信息。 2. Yeadon 介绍的 30 分钟从 0 到 1 的 AI 开发网站 Windsurf 零基础开发。它具有卓越的上下文理解能力,包括项目结构识别和跨文件上下文追踪;强大的功能特性,如 AI 智能代理和 Cascade 模式;广泛的应用支持,包括多语言支持和跨平台兼容性。 3. 《AI 编程与炼金术:Build on Trae》活动正在进行中,欢迎大家提交自己的 AI 编程作品。本教程由 AI 编程社 WaytoAGI AI 产品黄叔共同创作,全文使用 Trae 做 AI 开发,可通过相关链接获取更多内容。
2025-03-05
零编程基础,我想写一个程序实现识别pdf格式的车险保单。我需要多久时间?
对于零编程基础的您来说,要编写一个能够识别 PDF 格式车险保单的程序,所需时间会比较长。这取决于您学习编程的速度和投入的精力。 如果您每天能够投入大量时间学习并实践,可能需要几个月的时间来掌握必要的编程知识和技能,然后再花费一定时间来开发和调试这个程序。 但如果您只是利用业余时间学习,可能需要半年甚至更长时间才能实现这个目标。 需要注意的是,这只是一个大致的估计,实际所需时间会受到多种因素的影响,比如您的学习能力、学习资源的质量、遇到问题时解决的效率等。
2025-03-05
计算机小白学习AI的学习流程
对于计算机小白学习 AI,以下是一个较为系统的学习流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下案例: 二师兄在 2024 年 2 月接触到 AI 绘画,通过学习 SD 秋叶安装包和相关教程,进行炼丹实践。 雪梅 May 采用输入→模仿→自发创造的学习模式,在半年多的时间里保持较好的学习状态,学习 AI 相关知识。
2025-03-07
能做出流程图的ai
以下是一些能够制作流程图的 AI 工具和方法: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 生成流程图有两种方式: 可视化拖拽:代表产品有 (web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 语法渲染成图形,代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 3. Claude:可以通过输入提示词来生成流程图,但效果可能不太理想。 需要注意的是,画图的目的是加深理解,通过亲自动手画图来巩固印象。如果让 AI 画,可能会失去锻炼的机会,而且目前的 AI 画出的流程图可能不太美观,也难以修改。
2025-03-05
我想完全本地化部署deepseek,然后,将我的文档,文本,图片等内容丢给它训练,微调。我要完全本地化,因为我的文档设计隐私。我要免费开源流程。如何实现,
要完全本地化部署 DeepSeek 并使用您的文档、文本、图片等内容进行训练和微调,以下是一些相关的信息和步骤: 1. 模型训练与平台服务: 模型复现与微调:1:1 复现通常没问题,但理解细节并自行制作需要基础知识。有手把手教程、数据集等可帮助 1:1 复现,微调在特定领域可降低幻觉,参数量不变但权重变化。 训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是以用导学的学习方法。 模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。 2. 平台服务介绍: 阿里云提供多种解决方案。 百炼是提供多种模型服务的 Maas 平台。 派平台是提供云服务的 PaaS 平台,二者在定位、服务内容和核心差异上有所不同。 3. 关于模型训练与数据集相关问题: 数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。 多模态训练:多模态有自身标注方式,如视频拉框标注。 参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。 本地微调框架:可使用 llama factory 等框架,需搭建并部署。 开源数据下载:可在 GitHub、hugging face、Mo Model Scope 等平台获取。 数据集转化:将文档资料转成数据集可先手动形成 SOP,再逐步自动化,初期需大量人力。 4. 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 5. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 6. 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 7. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 请注意,在进行本地化部署和训练微调时,需要具备一定的技术知识和经验,并且要遵循相关的法律法规和道德规范。
2025-03-04
如何搭建一个工作流来做ai agent 的事情,帮助学生找工作的整个流程,从找合适岗位-> 投递简历 -> 和hr联系 ->做面试前的search工作和面试准备-> 提醒参加面试-> 面试结果追踪,后续的复盘,得到面试经验
搭建一个用于帮助学生找工作的 AI Agent 工作流可以参考以下步骤: 1. 规划 总结任务目标与执行形式,明确帮助学生从找合适岗位到面试结果追踪及复盘的全过程。 将任务分解为可管理的子任务,例如找合适岗位、投递简历、与 HR 联系、面试前准备、提醒参加面试、面试结果追踪和复盘等,并确立它们的逻辑顺序和依赖关系。 设计每个子任务的执行方法,比如确定合适的岗位筛选标准、制定简历投递策略、规划与 HR 沟通的方式等。 2. 实施 在相应的平台(如 Coze 等)上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,例如设置岗位筛选的参数、简历模板和投递渠道、与 HR 联系的话术等,并验证每个子任务的可用性。 3. 完善 整体试运行工作流,识别功能和性能的卡点。 通过反复测试和迭代,优化工作流,直至达到预期效果,例如提高学生找到合适工作的成功率、提升面试表现等。 此外,在技术实现方面,例如实现无代码开发和工具调用,您可以参考以下操作: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的工作流,也可以直接将相关工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将您的 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-27
大模型训练全流程
大模型训练通常包括以下全流程: 1. 收集海量数据:如同教导孩子成为博学多才之人,要让其阅读大量书籍、观看纪录片、与人交谈,对于 AI 模型,就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这种架构擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始学习,AI 模型开始“阅读”提供的数据,通过反复阅读尝试预测句子中的下一个词,从而逐渐学会理解和生成人类语言。 此外,大模型训练还可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 一般训练还会有以下步骤: 1. 无监督学习:模型通过分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 2. 清洗出好的数据。 3. 指令微调:训练模型理解并执行具体指令,如翻译文本以回答问题,输入内容包括特定格式的指令、输入和输出。 4. 对齐过程:通过引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 虽然各公司具体实现细节可能是机密,但这些步骤共同构成了构建高效、实用大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖社区贡献,闭源模型由企业投入大量资源开发,两种策略都旨在推动大语言模型技术发展和应用。
2025-02-26
我打算用windsurf、coze、飞书多维表格来搭建自动流程,重新为我推荐相关学习内容
以下是为您推荐的相关学习内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 搭建选择内容推荐流,用于根据用户输入的“想看 xxx 内容”,在飞书多维表格的稍后读存储地址中检索现有的收藏记录,匹配符合阅读兴趣的内容记录。 新建工作流「recommendRead」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令即开始流程,判断哪些用户输入是在交代想阅读的内容主题交由外层 bot 的大模型判断。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:添加「飞书多维表格search_records」插件,设置{{app_token}}参数,在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回所需查询结果,也可通过额外配置定向检索未读状态的收藏记录。 4.4 大模型节点:采用批处理对检索出来的收藏记录逐个进行相关性匹配,可优化用户提示词提升匹配精准度。 输入观点一键生成文案短视频 基于其它博主开源的视频生成工作流做了功能优化,实现视频全自动创建。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程) 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。
2025-02-26
AI最新资讯
以下是为您整理的 AI 最新资讯: 腾讯研究院相关: 在过去一年,人工智能技术迅猛发展,深刻重塑社会运行方式。腾讯研究院为降低信息获取成本、提升学习效率,开发了一系列专业的 AI 资讯产品,包括高度凝练的日报“AI 每日速递”、基于 AI 速递内容构建的周报“AI 每周 50 关键词”、以 3 5 分钟视频形式解读科技热点与关键技术原理的“科技九宫格”。此外,团队还开展了 AGI 专题分析、AGI 线上圆桌、AI&Society 高端研讨会与 AI&Society 百人百问等系列研究探讨。 3 月 4 日 AI 资讯: 【AI 3D】:Meshcapade 可从视频/图像中捕捉面部表情并具有逼真的 3D 发丝;InsTaG 能通过几秒钟视频学习,快速形成逼真的 3D 说话头像效果;3DMem 为新型 3D 场景记忆框架。 【AI 绘图】:智谱开源 AI 绘图 CogView4,可在图像中生成中文字符;海螺推出 Image01 多功能文本转图像模型。 【AI 视频】:Runway 内测能力可根据参考图像进行 Video to Video 视频风格化;Vidu 的 API 开放平台全面开放。 【AI 模型】:Google Colab 推出 Data Science Agent;微软为医疗行业提供首个统一语音 AI 助手 Dragon Copilot;Opera 宣布推出网页浏览器的 AI 代理。 Bot 智能体 Coze 在多领域的应用: 【人工智能(AI)技术跟进】:帮助 AI 研究人员和开发者跟进最新研究成果、技术动态和行业报告,实时更新 AI 技术动态,汇总行业报告,多平台推送提升团队沟通效率。 【金融投资领域】:金融分析师和投资者可通过 Coze bot 自动接收最新市场动态、股市新闻和财务报告,实时跟踪市场动向,自动生成财务报告,多平台同步推送方便团队协作。 您可以根据自身需求,进一步了解感兴趣的部分。
2025-03-08
最新AI大模型
以下是关于最新 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是利用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务如聚类。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称为深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-06
最近ai有什么最新发展或者大事件?
以下是 AI 领域的一些最新发展和大事件: 3 月:AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 4 月:英伟达发布硬件,股价飙升。 5 月:苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 7 月:快手开源 LivePortrait 模型,用于表情迁移。 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 9 月:阿里云发布模型,海螺 AI 参战;Google 发布 GameGen 实时生成游戏;通义千问 2.5 系列全家桶开源;华为发布 cloud matrix 云计算基础设施;GPT 高级语音模式上线;Meta 发布 AI 眼镜 Orion;AI 代码编辑器 cursor 爆火。 10 月:Pika 发布 1.5 模型;诺奖颁发给 AI 奠基人;特斯拉发布机器人;Adobe 发布 Illustrator+Al 生成矢量图;智谱 AI 发布 autoGLM;腾讯混元开源 3D 模型。 此外,在法律法规方面,《促进创新的人工智能监管方法》指出:AI 概念并非新事物,但数据生成和处理方面的近期进展改变了该领域及其产生的技术。AI 已在许多领域带来重大进步和效率提升,如交通监控、银行账户欺诈检测、工业中的大规模安全关键实践、新药发现和应对气候变化的技术等。随着 AI 变得更强大,创新者探索新的使用方式,将有更多应用出现,其具有巨大的增长潜力和创造就业的能力。同时,也对 AI 特定风险及其潜在危害进行了初步评估,并提及了一些交叉的高级风险。
2025-03-05
你现在有哪些最新更新的内容呢?
以下是最新更新的内容: 1. GPTs 实战:“摩斯密码” 作者景淮为平衡用户能力对内容做了调整,降低提示词复杂度。 文章风格调整,希望帮助为孩子接触 AI 的家长找到切入点。 内容包括需求分析、分步实现需求、提示词编写测试、GPTs 使用链接和总结。 2. 2024 年历史更新(归档) 2024 年 5 月 26 日更新了多份研究报告和演讲报告,包括《PublicFirst:公众如何看待 AI?(英译中)》《通义灵码:软件开发新范式》《人工智能行业:AI 时代最不该焦虑的,其实是内容创作者》《麦肯锡:人工智能行业:工作的新未来》《惠普&上海人工智能研究院:2024AIPC 赋能新质生产力》《百度智能云&长江云:面向 AIGC 的数智广电新质生产力构建白皮书》《COPU&IBM:2024 可信赖的企业级生成式 AI 白皮书》。 3. PixVerse V3 使用指南 本次更新包括已有能力升级,如提供更精准的提示词理解能力和更惊艳的视频动态效果,支持多种视频比例和风格化选择,文生视频和图生视频的风格化。 全新功能上线,如对口型功能、8 个创意效果和视频延长功能。
2025-03-05
AI在人力资源方面的最新应用实践
AI 在人力资源方面的最新应用实践包括以下几个方面: 1. 招聘初期:如职位描述生成、简历分析、面试题设计。 2. 员工绩效评估:分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈。 3. 员工培训与发展:辅助员工的培训和职业发展规划。 在全行业中,基础办公提效方面,如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等,都可以从【单个任务 task>角色 role>角色间协同 collaboration】显著提高工作效率。 例如在游戏行业,网易推出的首款 AI 手游《逆水寒》,将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特的剧情体验,还内嵌了全自动“AI 作词机”。 在文科白领方面,AI 在个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作。 用友的调研报告预测,随着技术进步,AI 将进一步推动个性化人力资源管理,创造无人值守的 HR 平台,推动企业持续发展。
2025-03-03
最新agi新闻
以下是为您整理的最新 AGI 新闻: 2024 年 7 月: 苹果发布 AI 原生操作系统,加强硬件和模型布局;Claude Sonnet 3.5 发布,挑战 OpenAI;视频生成领域 Runway Gen3 和快手可灵表现优秀;AI 3D 技术逐渐崭露头角;Google 和月之暗面推出长上下文缓存技术。 快手发布可灵网页版及大量模型更新;阶跃星辰发布多款模型;商汤打造类似 GPT4o 的实时语音演示;GraphRAG:微软开源新型 RAG 架构。 红杉资本美国合伙人 Pat Grady 在最新访谈中表示,AI 技术将为服务行业带来变革机遇,而非取代软件公司。AI 的潜力在于赋能服务行业,但人际关系和实际执行仍需人工。对于基础模型公司,Grady 认为它们可能像数据库公司一样发展,提供开发者 API,有机会进入应用层。他认为现有模型已足够强大,关键在于工程化优化和认知架构设计。 2024 年 10 月: 《Orange AI 的 9 月小结:AI 自媒体、AI 播客、AI 酒吧…AI 浓度太高了》提到鼓励建立自媒体,推出中文版 AI 播客 Demo 并吸引大量参与者,开设 AI 酒吧 Bar2AGI,参与 Demo Inn 和云栖大会,感受到行业快速发展和乐观氛围。 《AIGC Weekly91》指出国庆节期间的重要 AI 新闻,包括 OpenAI 推出 Canvas 功能和实时 API,微软发布新版 Copilot,具备深度系统集成和实时语音功能;Meta 发布 Meta Movie Gen 视频生成模型,自动配音质量高;LiquidAI 发布非 Transformer 模型 LFMs,推理效率显著提高。此外,Sora 项目负责人离职、多个新模型和工具发布,以及 OpenAI 完成新一轮融资,估值达到 1570 亿美元。 下篇:2024,分叉与洪流中提到,如果从“AGI 已经出现”的阴谋论出发,AGI 所需要的基本资源一定无法回避,它会在能源、算力、机器人等领域全力“协助”人类。比如在能源领域,有着“永远还差 50 年”称号的可控核聚变技术在 AI 的协助下开始有了松动,普林斯顿大学等离子体物理实验室通过 AI 成功在离子体撕裂前 300ms 进行了预测。从全人类能源供给的角度,唯一有希望提升全人类能源供给数量级的就是可控核聚变。在能源即将开始成为 AI 瓶颈的今天,AGI 如果有了意识,那一定会全力“协助”人类突破核聚变技术。
2025-02-28